1/*
2 * IBM Accurate Mathematical Library
3 * written by International Business Machines Corp.
4 * Copyright (C) 2001-2020 Free Software Foundation, Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this program; if not, see <https://www.gnu.org/licenses/>.
18 */
19/**************************************************************************/
20/* MODULE_NAME urem.c */
21/* */
22/* FUNCTION: uremainder */
23/* */
24/* An ultimate remainder routine. Given two IEEE double machine numbers x */
25/* ,y it computes the correctly rounded (to nearest) value of remainder */
26/* of dividing x by y. */
27/* Assumption: Machine arithmetic operations are performed in */
28/* round to nearest mode of IEEE 754 standard. */
29/* */
30/* ************************************************************************/
31
32#include "endian.h"
33#include "mydefs.h"
34#include "urem.h"
35#include "MathLib.h"
36#include <math.h>
37#include <math_private.h>
38#include <fenv_private.h>
39#include <libm-alias-finite.h>
40
41/**************************************************************************/
42/* An ultimate remainder routine. Given two IEEE double machine numbers x */
43/* ,y it computes the correctly rounded (to nearest) value of remainder */
44/**************************************************************************/
45double
46__ieee754_remainder (double x, double y)
47{
48 double z, d, xx;
49 int4 kx, ky, n, nn, n1, m1, l;
50 mynumber u, t, w = { { 0, 0 } }, v = { { 0, 0 } }, ww = { { 0, 0 } }, r;
51 u.x = x;
52 t.x = y;
53 kx = u.i[HIGH_HALF] & 0x7fffffff; /* no sign for x*/
54 t.i[HIGH_HALF] &= 0x7fffffff; /*no sign for y */
55 ky = t.i[HIGH_HALF];
56 /*------ |x| < 2^1023 and 2^-970 < |y| < 2^1024 ------------------*/
57 if (kx < 0x7fe00000 && ky < 0x7ff00000 && ky >= 0x03500000)
58 {
59 SET_RESTORE_ROUND_NOEX (FE_TONEAREST);
60 if (kx + 0x00100000 < ky)
61 return x;
62 if ((kx - 0x01500000) < ky)
63 {
64 z = x / t.x;
65 v.i[HIGH_HALF] = t.i[HIGH_HALF];
66 d = (z + big.x) - big.x;
67 xx = (x - d * v.x) - d * (t.x - v.x);
68 if (d - z != 0.5 && d - z != -0.5)
69 return (xx != 0) ? xx : ((x > 0) ? ZERO.x : nZERO.x);
70 else
71 {
72 if (fabs (xx) > 0.5 * t.x)
73 return (z > d) ? xx - t.x : xx + t.x;
74 else
75 return xx;
76 }
77 } /* (kx<(ky+0x01500000)) */
78 else
79 {
80 r.x = 1.0 / t.x;
81 n = t.i[HIGH_HALF];
82 nn = (n & 0x7ff00000) + 0x01400000;
83 w.i[HIGH_HALF] = n;
84 ww.x = t.x - w.x;
85 l = (kx - nn) & 0xfff00000;
86 n1 = ww.i[HIGH_HALF];
87 m1 = r.i[HIGH_HALF];
88 while (l > 0)
89 {
90 r.i[HIGH_HALF] = m1 - l;
91 z = u.x * r.x;
92 w.i[HIGH_HALF] = n + l;
93 ww.i[HIGH_HALF] = (n1) ? n1 + l : n1;
94 d = (z + big.x) - big.x;
95 u.x = (u.x - d * w.x) - d * ww.x;
96 l = (u.i[HIGH_HALF] & 0x7ff00000) - nn;
97 }
98 r.i[HIGH_HALF] = m1;
99 w.i[HIGH_HALF] = n;
100 ww.i[HIGH_HALF] = n1;
101 z = u.x * r.x;
102 d = (z + big.x) - big.x;
103 u.x = (u.x - d * w.x) - d * ww.x;
104 if (fabs (u.x) < 0.5 * t.x)
105 return (u.x != 0) ? u.x : ((x > 0) ? ZERO.x : nZERO.x);
106 else
107 if (fabs (u.x) > 0.5 * t.x)
108 return (d > z) ? u.x + t.x : u.x - t.x;
109 else
110 {
111 z = u.x / t.x; d = (z + big.x) - big.x;
112 return ((u.x - d * w.x) - d * ww.x);
113 }
114 }
115 } /* (kx<0x7fe00000&&ky<0x7ff00000&&ky>=0x03500000) */
116 else
117 {
118 if (kx < 0x7fe00000 && ky < 0x7ff00000 && (ky > 0 || t.i[LOW_HALF] != 0))
119 {
120 y = fabs (y) * t128.x;
121 z = __ieee754_remainder (x, y) * t128.x;
122 z = __ieee754_remainder (z, y) * tm128.x;
123 return z;
124 }
125 else
126 {
127 if ((kx & 0x7ff00000) == 0x7fe00000 && ky < 0x7ff00000 &&
128 (ky > 0 || t.i[LOW_HALF] != 0))
129 {
130 y = fabs (y);
131 z = 2.0 * __ieee754_remainder (0.5 * x, y);
132 d = fabs (z);
133 if (d <= fabs (d - y))
134 return z;
135 else if (d == y)
136 return 0.0 * x;
137 else
138 return (z > 0) ? z - y : z + y;
139 }
140 else /* if x is too big */
141 {
142 if (ky == 0 && t.i[LOW_HALF] == 0) /* y = 0 */
143 return (x * y) / (x * y);
144 else if (kx >= 0x7ff00000 /* x not finite */
145 || (ky > 0x7ff00000 /* y is NaN */
146 || (ky == 0x7ff00000 && t.i[LOW_HALF] != 0)))
147 return (x * y) / (x * y);
148 else
149 return x;
150 }
151 }
152 }
153}
154libm_alias_finite (__ieee754_remainder, __remainder)
155