1 | /* Malloc implementation for multiple threads without lock contention. |
2 | Copyright (C) 1996-2018 Free Software Foundation, Inc. |
3 | This file is part of the GNU C Library. |
4 | Contributed by Wolfram Gloger <wg@malloc.de> |
5 | and Doug Lea <dl@cs.oswego.edu>, 2001. |
6 | |
7 | The GNU C Library is free software; you can redistribute it and/or |
8 | modify it under the terms of the GNU Lesser General Public License as |
9 | published by the Free Software Foundation; either version 2.1 of the |
10 | License, or (at your option) any later version. |
11 | |
12 | The GNU C Library is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 | Lesser General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU Lesser General Public |
18 | License along with the GNU C Library; see the file COPYING.LIB. If |
19 | not, see <http://www.gnu.org/licenses/>. */ |
20 | |
21 | /* |
22 | This is a version (aka ptmalloc2) of malloc/free/realloc written by |
23 | Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger. |
24 | |
25 | There have been substantial changes made after the integration into |
26 | glibc in all parts of the code. Do not look for much commonality |
27 | with the ptmalloc2 version. |
28 | |
29 | * Version ptmalloc2-20011215 |
30 | based on: |
31 | VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) |
32 | |
33 | * Quickstart |
34 | |
35 | In order to compile this implementation, a Makefile is provided with |
36 | the ptmalloc2 distribution, which has pre-defined targets for some |
37 | popular systems (e.g. "make posix" for Posix threads). All that is |
38 | typically required with regard to compiler flags is the selection of |
39 | the thread package via defining one out of USE_PTHREADS, USE_THR or |
40 | USE_SPROC. Check the thread-m.h file for what effects this has. |
41 | Many/most systems will additionally require USE_TSD_DATA_HACK to be |
42 | defined, so this is the default for "make posix". |
43 | |
44 | * Why use this malloc? |
45 | |
46 | This is not the fastest, most space-conserving, most portable, or |
47 | most tunable malloc ever written. However it is among the fastest |
48 | while also being among the most space-conserving, portable and tunable. |
49 | Consistent balance across these factors results in a good general-purpose |
50 | allocator for malloc-intensive programs. |
51 | |
52 | The main properties of the algorithms are: |
53 | * For large (>= 512 bytes) requests, it is a pure best-fit allocator, |
54 | with ties normally decided via FIFO (i.e. least recently used). |
55 | * For small (<= 64 bytes by default) requests, it is a caching |
56 | allocator, that maintains pools of quickly recycled chunks. |
57 | * In between, and for combinations of large and small requests, it does |
58 | the best it can trying to meet both goals at once. |
59 | * For very large requests (>= 128KB by default), it relies on system |
60 | memory mapping facilities, if supported. |
61 | |
62 | For a longer but slightly out of date high-level description, see |
63 | http://gee.cs.oswego.edu/dl/html/malloc.html |
64 | |
65 | You may already by default be using a C library containing a malloc |
66 | that is based on some version of this malloc (for example in |
67 | linux). You might still want to use the one in this file in order to |
68 | customize settings or to avoid overheads associated with library |
69 | versions. |
70 | |
71 | * Contents, described in more detail in "description of public routines" below. |
72 | |
73 | Standard (ANSI/SVID/...) functions: |
74 | malloc(size_t n); |
75 | calloc(size_t n_elements, size_t element_size); |
76 | free(void* p); |
77 | realloc(void* p, size_t n); |
78 | memalign(size_t alignment, size_t n); |
79 | valloc(size_t n); |
80 | mallinfo() |
81 | mallopt(int parameter_number, int parameter_value) |
82 | |
83 | Additional functions: |
84 | independent_calloc(size_t n_elements, size_t size, void* chunks[]); |
85 | independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); |
86 | pvalloc(size_t n); |
87 | malloc_trim(size_t pad); |
88 | malloc_usable_size(void* p); |
89 | malloc_stats(); |
90 | |
91 | * Vital statistics: |
92 | |
93 | Supported pointer representation: 4 or 8 bytes |
94 | Supported size_t representation: 4 or 8 bytes |
95 | Note that size_t is allowed to be 4 bytes even if pointers are 8. |
96 | You can adjust this by defining INTERNAL_SIZE_T |
97 | |
98 | Alignment: 2 * sizeof(size_t) (default) |
99 | (i.e., 8 byte alignment with 4byte size_t). This suffices for |
100 | nearly all current machines and C compilers. However, you can |
101 | define MALLOC_ALIGNMENT to be wider than this if necessary. |
102 | |
103 | Minimum overhead per allocated chunk: 4 or 8 bytes |
104 | Each malloced chunk has a hidden word of overhead holding size |
105 | and status information. |
106 | |
107 | Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) |
108 | 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) |
109 | |
110 | When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte |
111 | ptrs but 4 byte size) or 24 (for 8/8) additional bytes are |
112 | needed; 4 (8) for a trailing size field and 8 (16) bytes for |
113 | free list pointers. Thus, the minimum allocatable size is |
114 | 16/24/32 bytes. |
115 | |
116 | Even a request for zero bytes (i.e., malloc(0)) returns a |
117 | pointer to something of the minimum allocatable size. |
118 | |
119 | The maximum overhead wastage (i.e., number of extra bytes |
120 | allocated than were requested in malloc) is less than or equal |
121 | to the minimum size, except for requests >= mmap_threshold that |
122 | are serviced via mmap(), where the worst case wastage is 2 * |
123 | sizeof(size_t) bytes plus the remainder from a system page (the |
124 | minimal mmap unit); typically 4096 or 8192 bytes. |
125 | |
126 | Maximum allocated size: 4-byte size_t: 2^32 minus about two pages |
127 | 8-byte size_t: 2^64 minus about two pages |
128 | |
129 | It is assumed that (possibly signed) size_t values suffice to |
130 | represent chunk sizes. `Possibly signed' is due to the fact |
131 | that `size_t' may be defined on a system as either a signed or |
132 | an unsigned type. The ISO C standard says that it must be |
133 | unsigned, but a few systems are known not to adhere to this. |
134 | Additionally, even when size_t is unsigned, sbrk (which is by |
135 | default used to obtain memory from system) accepts signed |
136 | arguments, and may not be able to handle size_t-wide arguments |
137 | with negative sign bit. Generally, values that would |
138 | appear as negative after accounting for overhead and alignment |
139 | are supported only via mmap(), which does not have this |
140 | limitation. |
141 | |
142 | Requests for sizes outside the allowed range will perform an optional |
143 | failure action and then return null. (Requests may also |
144 | also fail because a system is out of memory.) |
145 | |
146 | Thread-safety: thread-safe |
147 | |
148 | Compliance: I believe it is compliant with the 1997 Single Unix Specification |
149 | Also SVID/XPG, ANSI C, and probably others as well. |
150 | |
151 | * Synopsis of compile-time options: |
152 | |
153 | People have reported using previous versions of this malloc on all |
154 | versions of Unix, sometimes by tweaking some of the defines |
155 | below. It has been tested most extensively on Solaris and Linux. |
156 | People also report using it in stand-alone embedded systems. |
157 | |
158 | The implementation is in straight, hand-tuned ANSI C. It is not |
159 | at all modular. (Sorry!) It uses a lot of macros. To be at all |
160 | usable, this code should be compiled using an optimizing compiler |
161 | (for example gcc -O3) that can simplify expressions and control |
162 | paths. (FAQ: some macros import variables as arguments rather than |
163 | declare locals because people reported that some debuggers |
164 | otherwise get confused.) |
165 | |
166 | OPTION DEFAULT VALUE |
167 | |
168 | Compilation Environment options: |
169 | |
170 | HAVE_MREMAP 0 |
171 | |
172 | Changing default word sizes: |
173 | |
174 | INTERNAL_SIZE_T size_t |
175 | |
176 | Configuration and functionality options: |
177 | |
178 | USE_PUBLIC_MALLOC_WRAPPERS NOT defined |
179 | USE_MALLOC_LOCK NOT defined |
180 | MALLOC_DEBUG NOT defined |
181 | REALLOC_ZERO_BYTES_FREES 1 |
182 | TRIM_FASTBINS 0 |
183 | |
184 | Options for customizing MORECORE: |
185 | |
186 | MORECORE sbrk |
187 | MORECORE_FAILURE -1 |
188 | MORECORE_CONTIGUOUS 1 |
189 | MORECORE_CANNOT_TRIM NOT defined |
190 | MORECORE_CLEARS 1 |
191 | MMAP_AS_MORECORE_SIZE (1024 * 1024) |
192 | |
193 | Tuning options that are also dynamically changeable via mallopt: |
194 | |
195 | DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit) |
196 | DEFAULT_TRIM_THRESHOLD 128 * 1024 |
197 | DEFAULT_TOP_PAD 0 |
198 | DEFAULT_MMAP_THRESHOLD 128 * 1024 |
199 | DEFAULT_MMAP_MAX 65536 |
200 | |
201 | There are several other #defined constants and macros that you |
202 | probably don't want to touch unless you are extending or adapting malloc. */ |
203 | |
204 | /* |
205 | void* is the pointer type that malloc should say it returns |
206 | */ |
207 | |
208 | #ifndef void |
209 | #define void void |
210 | #endif /*void*/ |
211 | |
212 | #include <stddef.h> /* for size_t */ |
213 | #include <stdlib.h> /* for getenv(), abort() */ |
214 | #include <unistd.h> /* for __libc_enable_secure */ |
215 | |
216 | #include <atomic.h> |
217 | #include <_itoa.h> |
218 | #include <bits/wordsize.h> |
219 | #include <sys/sysinfo.h> |
220 | |
221 | #include <ldsodefs.h> |
222 | |
223 | #include <unistd.h> |
224 | #include <stdio.h> /* needed for malloc_stats */ |
225 | #include <errno.h> |
226 | #include <assert.h> |
227 | |
228 | #include <shlib-compat.h> |
229 | |
230 | /* For uintptr_t. */ |
231 | #include <stdint.h> |
232 | |
233 | /* For va_arg, va_start, va_end. */ |
234 | #include <stdarg.h> |
235 | |
236 | /* For MIN, MAX, powerof2. */ |
237 | #include <sys/param.h> |
238 | |
239 | /* For ALIGN_UP et. al. */ |
240 | #include <libc-pointer-arith.h> |
241 | |
242 | /* For DIAG_PUSH/POP_NEEDS_COMMENT et al. */ |
243 | #include <libc-diag.h> |
244 | |
245 | #include <malloc/malloc-internal.h> |
246 | |
247 | /* For SINGLE_THREAD_P. */ |
248 | #include <sysdep-cancel.h> |
249 | |
250 | /* |
251 | Debugging: |
252 | |
253 | Because freed chunks may be overwritten with bookkeeping fields, this |
254 | malloc will often die when freed memory is overwritten by user |
255 | programs. This can be very effective (albeit in an annoying way) |
256 | in helping track down dangling pointers. |
257 | |
258 | If you compile with -DMALLOC_DEBUG, a number of assertion checks are |
259 | enabled that will catch more memory errors. You probably won't be |
260 | able to make much sense of the actual assertion errors, but they |
261 | should help you locate incorrectly overwritten memory. The checking |
262 | is fairly extensive, and will slow down execution |
263 | noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set |
264 | will attempt to check every non-mmapped allocated and free chunk in |
265 | the course of computing the summmaries. (By nature, mmapped regions |
266 | cannot be checked very much automatically.) |
267 | |
268 | Setting MALLOC_DEBUG may also be helpful if you are trying to modify |
269 | this code. The assertions in the check routines spell out in more |
270 | detail the assumptions and invariants underlying the algorithms. |
271 | |
272 | Setting MALLOC_DEBUG does NOT provide an automated mechanism for |
273 | checking that all accesses to malloced memory stay within their |
274 | bounds. However, there are several add-ons and adaptations of this |
275 | or other mallocs available that do this. |
276 | */ |
277 | |
278 | #ifndef MALLOC_DEBUG |
279 | #define MALLOC_DEBUG 0 |
280 | #endif |
281 | |
282 | #ifndef NDEBUG |
283 | # define __assert_fail(assertion, file, line, function) \ |
284 | __malloc_assert(assertion, file, line, function) |
285 | |
286 | extern const char *__progname; |
287 | |
288 | static void |
289 | __malloc_assert (const char *assertion, const char *file, unsigned int line, |
290 | const char *function) |
291 | { |
292 | (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n" , |
293 | __progname, __progname[0] ? ": " : "" , |
294 | file, line, |
295 | function ? function : "" , function ? ": " : "" , |
296 | assertion); |
297 | fflush (stderr); |
298 | abort (); |
299 | } |
300 | #endif |
301 | |
302 | #if USE_TCACHE |
303 | /* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */ |
304 | # define TCACHE_MAX_BINS 64 |
305 | # define MAX_TCACHE_SIZE tidx2usize (TCACHE_MAX_BINS-1) |
306 | |
307 | /* Only used to pre-fill the tunables. */ |
308 | # define tidx2usize(idx) (((size_t) idx) * MALLOC_ALIGNMENT + MINSIZE - SIZE_SZ) |
309 | |
310 | /* When "x" is from chunksize(). */ |
311 | # define csize2tidx(x) (((x) - MINSIZE + MALLOC_ALIGNMENT - 1) / MALLOC_ALIGNMENT) |
312 | /* When "x" is a user-provided size. */ |
313 | # define usize2tidx(x) csize2tidx (request2size (x)) |
314 | |
315 | /* With rounding and alignment, the bins are... |
316 | idx 0 bytes 0..24 (64-bit) or 0..12 (32-bit) |
317 | idx 1 bytes 25..40 or 13..20 |
318 | idx 2 bytes 41..56 or 21..28 |
319 | etc. */ |
320 | |
321 | /* This is another arbitrary limit, which tunables can change. Each |
322 | tcache bin will hold at most this number of chunks. */ |
323 | # define TCACHE_FILL_COUNT 7 |
324 | |
325 | /* Maximum chunks in tcache bins for tunables. This value must fit the range |
326 | of tcache->counts[] entries, else they may overflow. */ |
327 | # define MAX_TCACHE_COUNT UINT16_MAX |
328 | #endif |
329 | |
330 | |
331 | /* |
332 | REALLOC_ZERO_BYTES_FREES should be set if a call to |
333 | realloc with zero bytes should be the same as a call to free. |
334 | This is required by the C standard. Otherwise, since this malloc |
335 | returns a unique pointer for malloc(0), so does realloc(p, 0). |
336 | */ |
337 | |
338 | #ifndef REALLOC_ZERO_BYTES_FREES |
339 | #define REALLOC_ZERO_BYTES_FREES 1 |
340 | #endif |
341 | |
342 | /* |
343 | TRIM_FASTBINS controls whether free() of a very small chunk can |
344 | immediately lead to trimming. Setting to true (1) can reduce memory |
345 | footprint, but will almost always slow down programs that use a lot |
346 | of small chunks. |
347 | |
348 | Define this only if you are willing to give up some speed to more |
349 | aggressively reduce system-level memory footprint when releasing |
350 | memory in programs that use many small chunks. You can get |
351 | essentially the same effect by setting MXFAST to 0, but this can |
352 | lead to even greater slowdowns in programs using many small chunks. |
353 | TRIM_FASTBINS is an in-between compile-time option, that disables |
354 | only those chunks bordering topmost memory from being placed in |
355 | fastbins. |
356 | */ |
357 | |
358 | #ifndef TRIM_FASTBINS |
359 | #define TRIM_FASTBINS 0 |
360 | #endif |
361 | |
362 | |
363 | /* Definition for getting more memory from the OS. */ |
364 | #define MORECORE (*__morecore) |
365 | #define MORECORE_FAILURE 0 |
366 | void * __default_morecore (ptrdiff_t); |
367 | void *(*__morecore)(ptrdiff_t) = __default_morecore; |
368 | |
369 | |
370 | #include <string.h> |
371 | |
372 | /* |
373 | MORECORE-related declarations. By default, rely on sbrk |
374 | */ |
375 | |
376 | |
377 | /* |
378 | MORECORE is the name of the routine to call to obtain more memory |
379 | from the system. See below for general guidance on writing |
380 | alternative MORECORE functions, as well as a version for WIN32 and a |
381 | sample version for pre-OSX macos. |
382 | */ |
383 | |
384 | #ifndef MORECORE |
385 | #define MORECORE sbrk |
386 | #endif |
387 | |
388 | /* |
389 | MORECORE_FAILURE is the value returned upon failure of MORECORE |
390 | as well as mmap. Since it cannot be an otherwise valid memory address, |
391 | and must reflect values of standard sys calls, you probably ought not |
392 | try to redefine it. |
393 | */ |
394 | |
395 | #ifndef MORECORE_FAILURE |
396 | #define MORECORE_FAILURE (-1) |
397 | #endif |
398 | |
399 | /* |
400 | If MORECORE_CONTIGUOUS is true, take advantage of fact that |
401 | consecutive calls to MORECORE with positive arguments always return |
402 | contiguous increasing addresses. This is true of unix sbrk. Even |
403 | if not defined, when regions happen to be contiguous, malloc will |
404 | permit allocations spanning regions obtained from different |
405 | calls. But defining this when applicable enables some stronger |
406 | consistency checks and space efficiencies. |
407 | */ |
408 | |
409 | #ifndef MORECORE_CONTIGUOUS |
410 | #define MORECORE_CONTIGUOUS 1 |
411 | #endif |
412 | |
413 | /* |
414 | Define MORECORE_CANNOT_TRIM if your version of MORECORE |
415 | cannot release space back to the system when given negative |
416 | arguments. This is generally necessary only if you are using |
417 | a hand-crafted MORECORE function that cannot handle negative arguments. |
418 | */ |
419 | |
420 | /* #define MORECORE_CANNOT_TRIM */ |
421 | |
422 | /* MORECORE_CLEARS (default 1) |
423 | The degree to which the routine mapped to MORECORE zeroes out |
424 | memory: never (0), only for newly allocated space (1) or always |
425 | (2). The distinction between (1) and (2) is necessary because on |
426 | some systems, if the application first decrements and then |
427 | increments the break value, the contents of the reallocated space |
428 | are unspecified. |
429 | */ |
430 | |
431 | #ifndef MORECORE_CLEARS |
432 | # define MORECORE_CLEARS 1 |
433 | #endif |
434 | |
435 | |
436 | /* |
437 | MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if |
438 | sbrk fails, and mmap is used as a backup. The value must be a |
439 | multiple of page size. This backup strategy generally applies only |
440 | when systems have "holes" in address space, so sbrk cannot perform |
441 | contiguous expansion, but there is still space available on system. |
442 | On systems for which this is known to be useful (i.e. most linux |
443 | kernels), this occurs only when programs allocate huge amounts of |
444 | memory. Between this, and the fact that mmap regions tend to be |
445 | limited, the size should be large, to avoid too many mmap calls and |
446 | thus avoid running out of kernel resources. */ |
447 | |
448 | #ifndef MMAP_AS_MORECORE_SIZE |
449 | #define MMAP_AS_MORECORE_SIZE (1024 * 1024) |
450 | #endif |
451 | |
452 | /* |
453 | Define HAVE_MREMAP to make realloc() use mremap() to re-allocate |
454 | large blocks. |
455 | */ |
456 | |
457 | #ifndef HAVE_MREMAP |
458 | #define HAVE_MREMAP 0 |
459 | #endif |
460 | |
461 | /* We may need to support __malloc_initialize_hook for backwards |
462 | compatibility. */ |
463 | |
464 | #if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_24) |
465 | # define HAVE_MALLOC_INIT_HOOK 1 |
466 | #else |
467 | # define HAVE_MALLOC_INIT_HOOK 0 |
468 | #endif |
469 | |
470 | |
471 | /* |
472 | This version of malloc supports the standard SVID/XPG mallinfo |
473 | routine that returns a struct containing usage properties and |
474 | statistics. It should work on any SVID/XPG compliant system that has |
475 | a /usr/include/malloc.h defining struct mallinfo. (If you'd like to |
476 | install such a thing yourself, cut out the preliminary declarations |
477 | as described above and below and save them in a malloc.h file. But |
478 | there's no compelling reason to bother to do this.) |
479 | |
480 | The main declaration needed is the mallinfo struct that is returned |
481 | (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a |
482 | bunch of fields that are not even meaningful in this version of |
483 | malloc. These fields are are instead filled by mallinfo() with |
484 | other numbers that might be of interest. |
485 | */ |
486 | |
487 | |
488 | /* ---------- description of public routines ------------ */ |
489 | |
490 | /* |
491 | malloc(size_t n) |
492 | Returns a pointer to a newly allocated chunk of at least n bytes, or null |
493 | if no space is available. Additionally, on failure, errno is |
494 | set to ENOMEM on ANSI C systems. |
495 | |
496 | If n is zero, malloc returns a minumum-sized chunk. (The minimum |
497 | size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit |
498 | systems.) On most systems, size_t is an unsigned type, so calls |
499 | with negative arguments are interpreted as requests for huge amounts |
500 | of space, which will often fail. The maximum supported value of n |
501 | differs across systems, but is in all cases less than the maximum |
502 | representable value of a size_t. |
503 | */ |
504 | void* __libc_malloc(size_t); |
505 | libc_hidden_proto (__libc_malloc) |
506 | |
507 | /* |
508 | free(void* p) |
509 | Releases the chunk of memory pointed to by p, that had been previously |
510 | allocated using malloc or a related routine such as realloc. |
511 | It has no effect if p is null. It can have arbitrary (i.e., bad!) |
512 | effects if p has already been freed. |
513 | |
514 | Unless disabled (using mallopt), freeing very large spaces will |
515 | when possible, automatically trigger operations that give |
516 | back unused memory to the system, thus reducing program footprint. |
517 | */ |
518 | void __libc_free(void*); |
519 | libc_hidden_proto (__libc_free) |
520 | |
521 | /* |
522 | calloc(size_t n_elements, size_t element_size); |
523 | Returns a pointer to n_elements * element_size bytes, with all locations |
524 | set to zero. |
525 | */ |
526 | void* __libc_calloc(size_t, size_t); |
527 | |
528 | /* |
529 | realloc(void* p, size_t n) |
530 | Returns a pointer to a chunk of size n that contains the same data |
531 | as does chunk p up to the minimum of (n, p's size) bytes, or null |
532 | if no space is available. |
533 | |
534 | The returned pointer may or may not be the same as p. The algorithm |
535 | prefers extending p when possible, otherwise it employs the |
536 | equivalent of a malloc-copy-free sequence. |
537 | |
538 | If p is null, realloc is equivalent to malloc. |
539 | |
540 | If space is not available, realloc returns null, errno is set (if on |
541 | ANSI) and p is NOT freed. |
542 | |
543 | if n is for fewer bytes than already held by p, the newly unused |
544 | space is lopped off and freed if possible. Unless the #define |
545 | REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of |
546 | zero (re)allocates a minimum-sized chunk. |
547 | |
548 | Large chunks that were internally obtained via mmap will always be |
549 | grown using malloc-copy-free sequences unless the system supports |
550 | MREMAP (currently only linux). |
551 | |
552 | The old unix realloc convention of allowing the last-free'd chunk |
553 | to be used as an argument to realloc is not supported. |
554 | */ |
555 | void* __libc_realloc(void*, size_t); |
556 | libc_hidden_proto (__libc_realloc) |
557 | |
558 | /* |
559 | memalign(size_t alignment, size_t n); |
560 | Returns a pointer to a newly allocated chunk of n bytes, aligned |
561 | in accord with the alignment argument. |
562 | |
563 | The alignment argument should be a power of two. If the argument is |
564 | not a power of two, the nearest greater power is used. |
565 | 8-byte alignment is guaranteed by normal malloc calls, so don't |
566 | bother calling memalign with an argument of 8 or less. |
567 | |
568 | Overreliance on memalign is a sure way to fragment space. |
569 | */ |
570 | void* __libc_memalign(size_t, size_t); |
571 | libc_hidden_proto (__libc_memalign) |
572 | |
573 | /* |
574 | valloc(size_t n); |
575 | Equivalent to memalign(pagesize, n), where pagesize is the page |
576 | size of the system. If the pagesize is unknown, 4096 is used. |
577 | */ |
578 | void* __libc_valloc(size_t); |
579 | |
580 | |
581 | |
582 | /* |
583 | mallopt(int parameter_number, int parameter_value) |
584 | Sets tunable parameters The format is to provide a |
585 | (parameter-number, parameter-value) pair. mallopt then sets the |
586 | corresponding parameter to the argument value if it can (i.e., so |
587 | long as the value is meaningful), and returns 1 if successful else |
588 | 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, |
589 | normally defined in malloc.h. Only one of these (M_MXFAST) is used |
590 | in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply, |
591 | so setting them has no effect. But this malloc also supports four |
592 | other options in mallopt. See below for details. Briefly, supported |
593 | parameters are as follows (listed defaults are for "typical" |
594 | configurations). |
595 | |
596 | Symbol param # default allowed param values |
597 | M_MXFAST 1 64 0-80 (0 disables fastbins) |
598 | M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming) |
599 | M_TOP_PAD -2 0 any |
600 | M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support) |
601 | M_MMAP_MAX -4 65536 any (0 disables use of mmap) |
602 | */ |
603 | int __libc_mallopt(int, int); |
604 | libc_hidden_proto (__libc_mallopt) |
605 | |
606 | |
607 | /* |
608 | mallinfo() |
609 | Returns (by copy) a struct containing various summary statistics: |
610 | |
611 | arena: current total non-mmapped bytes allocated from system |
612 | ordblks: the number of free chunks |
613 | smblks: the number of fastbin blocks (i.e., small chunks that |
614 | have been freed but not use resused or consolidated) |
615 | hblks: current number of mmapped regions |
616 | hblkhd: total bytes held in mmapped regions |
617 | usmblks: always 0 |
618 | fsmblks: total bytes held in fastbin blocks |
619 | uordblks: current total allocated space (normal or mmapped) |
620 | fordblks: total free space |
621 | keepcost: the maximum number of bytes that could ideally be released |
622 | back to system via malloc_trim. ("ideally" means that |
623 | it ignores page restrictions etc.) |
624 | |
625 | Because these fields are ints, but internal bookkeeping may |
626 | be kept as longs, the reported values may wrap around zero and |
627 | thus be inaccurate. |
628 | */ |
629 | struct mallinfo __libc_mallinfo(void); |
630 | |
631 | |
632 | /* |
633 | pvalloc(size_t n); |
634 | Equivalent to valloc(minimum-page-that-holds(n)), that is, |
635 | round up n to nearest pagesize. |
636 | */ |
637 | void* __libc_pvalloc(size_t); |
638 | |
639 | /* |
640 | malloc_trim(size_t pad); |
641 | |
642 | If possible, gives memory back to the system (via negative |
643 | arguments to sbrk) if there is unused memory at the `high' end of |
644 | the malloc pool. You can call this after freeing large blocks of |
645 | memory to potentially reduce the system-level memory requirements |
646 | of a program. However, it cannot guarantee to reduce memory. Under |
647 | some allocation patterns, some large free blocks of memory will be |
648 | locked between two used chunks, so they cannot be given back to |
649 | the system. |
650 | |
651 | The `pad' argument to malloc_trim represents the amount of free |
652 | trailing space to leave untrimmed. If this argument is zero, |
653 | only the minimum amount of memory to maintain internal data |
654 | structures will be left (one page or less). Non-zero arguments |
655 | can be supplied to maintain enough trailing space to service |
656 | future expected allocations without having to re-obtain memory |
657 | from the system. |
658 | |
659 | Malloc_trim returns 1 if it actually released any memory, else 0. |
660 | On systems that do not support "negative sbrks", it will always |
661 | return 0. |
662 | */ |
663 | int __malloc_trim(size_t); |
664 | |
665 | /* |
666 | malloc_usable_size(void* p); |
667 | |
668 | Returns the number of bytes you can actually use in |
669 | an allocated chunk, which may be more than you requested (although |
670 | often not) due to alignment and minimum size constraints. |
671 | You can use this many bytes without worrying about |
672 | overwriting other allocated objects. This is not a particularly great |
673 | programming practice. malloc_usable_size can be more useful in |
674 | debugging and assertions, for example: |
675 | |
676 | p = malloc(n); |
677 | assert(malloc_usable_size(p) >= 256); |
678 | |
679 | */ |
680 | size_t __malloc_usable_size(void*); |
681 | |
682 | /* |
683 | malloc_stats(); |
684 | Prints on stderr the amount of space obtained from the system (both |
685 | via sbrk and mmap), the maximum amount (which may be more than |
686 | current if malloc_trim and/or munmap got called), and the current |
687 | number of bytes allocated via malloc (or realloc, etc) but not yet |
688 | freed. Note that this is the number of bytes allocated, not the |
689 | number requested. It will be larger than the number requested |
690 | because of alignment and bookkeeping overhead. Because it includes |
691 | alignment wastage as being in use, this figure may be greater than |
692 | zero even when no user-level chunks are allocated. |
693 | |
694 | The reported current and maximum system memory can be inaccurate if |
695 | a program makes other calls to system memory allocation functions |
696 | (normally sbrk) outside of malloc. |
697 | |
698 | malloc_stats prints only the most commonly interesting statistics. |
699 | More information can be obtained by calling mallinfo. |
700 | |
701 | */ |
702 | void __malloc_stats(void); |
703 | |
704 | /* |
705 | posix_memalign(void **memptr, size_t alignment, size_t size); |
706 | |
707 | POSIX wrapper like memalign(), checking for validity of size. |
708 | */ |
709 | int __posix_memalign(void **, size_t, size_t); |
710 | |
711 | /* mallopt tuning options */ |
712 | |
713 | /* |
714 | M_MXFAST is the maximum request size used for "fastbins", special bins |
715 | that hold returned chunks without consolidating their spaces. This |
716 | enables future requests for chunks of the same size to be handled |
717 | very quickly, but can increase fragmentation, and thus increase the |
718 | overall memory footprint of a program. |
719 | |
720 | This malloc manages fastbins very conservatively yet still |
721 | efficiently, so fragmentation is rarely a problem for values less |
722 | than or equal to the default. The maximum supported value of MXFAST |
723 | is 80. You wouldn't want it any higher than this anyway. Fastbins |
724 | are designed especially for use with many small structs, objects or |
725 | strings -- the default handles structs/objects/arrays with sizes up |
726 | to 8 4byte fields, or small strings representing words, tokens, |
727 | etc. Using fastbins for larger objects normally worsens |
728 | fragmentation without improving speed. |
729 | |
730 | M_MXFAST is set in REQUEST size units. It is internally used in |
731 | chunksize units, which adds padding and alignment. You can reduce |
732 | M_MXFAST to 0 to disable all use of fastbins. This causes the malloc |
733 | algorithm to be a closer approximation of fifo-best-fit in all cases, |
734 | not just for larger requests, but will generally cause it to be |
735 | slower. |
736 | */ |
737 | |
738 | |
739 | /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */ |
740 | #ifndef M_MXFAST |
741 | #define M_MXFAST 1 |
742 | #endif |
743 | |
744 | #ifndef DEFAULT_MXFAST |
745 | #define DEFAULT_MXFAST (64 * SIZE_SZ / 4) |
746 | #endif |
747 | |
748 | |
749 | /* |
750 | M_TRIM_THRESHOLD is the maximum amount of unused top-most memory |
751 | to keep before releasing via malloc_trim in free(). |
752 | |
753 | Automatic trimming is mainly useful in long-lived programs. |
754 | Because trimming via sbrk can be slow on some systems, and can |
755 | sometimes be wasteful (in cases where programs immediately |
756 | afterward allocate more large chunks) the value should be high |
757 | enough so that your overall system performance would improve by |
758 | releasing this much memory. |
759 | |
760 | The trim threshold and the mmap control parameters (see below) |
761 | can be traded off with one another. Trimming and mmapping are |
762 | two different ways of releasing unused memory back to the |
763 | system. Between these two, it is often possible to keep |
764 | system-level demands of a long-lived program down to a bare |
765 | minimum. For example, in one test suite of sessions measuring |
766 | the XF86 X server on Linux, using a trim threshold of 128K and a |
767 | mmap threshold of 192K led to near-minimal long term resource |
768 | consumption. |
769 | |
770 | If you are using this malloc in a long-lived program, it should |
771 | pay to experiment with these values. As a rough guide, you |
772 | might set to a value close to the average size of a process |
773 | (program) running on your system. Releasing this much memory |
774 | would allow such a process to run in memory. Generally, it's |
775 | worth it to tune for trimming rather tham memory mapping when a |
776 | program undergoes phases where several large chunks are |
777 | allocated and released in ways that can reuse each other's |
778 | storage, perhaps mixed with phases where there are no such |
779 | chunks at all. And in well-behaved long-lived programs, |
780 | controlling release of large blocks via trimming versus mapping |
781 | is usually faster. |
782 | |
783 | However, in most programs, these parameters serve mainly as |
784 | protection against the system-level effects of carrying around |
785 | massive amounts of unneeded memory. Since frequent calls to |
786 | sbrk, mmap, and munmap otherwise degrade performance, the default |
787 | parameters are set to relatively high values that serve only as |
788 | safeguards. |
789 | |
790 | The trim value It must be greater than page size to have any useful |
791 | effect. To disable trimming completely, you can set to |
792 | (unsigned long)(-1) |
793 | |
794 | Trim settings interact with fastbin (MXFAST) settings: Unless |
795 | TRIM_FASTBINS is defined, automatic trimming never takes place upon |
796 | freeing a chunk with size less than or equal to MXFAST. Trimming is |
797 | instead delayed until subsequent freeing of larger chunks. However, |
798 | you can still force an attempted trim by calling malloc_trim. |
799 | |
800 | Also, trimming is not generally possible in cases where |
801 | the main arena is obtained via mmap. |
802 | |
803 | Note that the trick some people use of mallocing a huge space and |
804 | then freeing it at program startup, in an attempt to reserve system |
805 | memory, doesn't have the intended effect under automatic trimming, |
806 | since that memory will immediately be returned to the system. |
807 | */ |
808 | |
809 | #define M_TRIM_THRESHOLD -1 |
810 | |
811 | #ifndef DEFAULT_TRIM_THRESHOLD |
812 | #define DEFAULT_TRIM_THRESHOLD (128 * 1024) |
813 | #endif |
814 | |
815 | /* |
816 | M_TOP_PAD is the amount of extra `padding' space to allocate or |
817 | retain whenever sbrk is called. It is used in two ways internally: |
818 | |
819 | * When sbrk is called to extend the top of the arena to satisfy |
820 | a new malloc request, this much padding is added to the sbrk |
821 | request. |
822 | |
823 | * When malloc_trim is called automatically from free(), |
824 | it is used as the `pad' argument. |
825 | |
826 | In both cases, the actual amount of padding is rounded |
827 | so that the end of the arena is always a system page boundary. |
828 | |
829 | The main reason for using padding is to avoid calling sbrk so |
830 | often. Having even a small pad greatly reduces the likelihood |
831 | that nearly every malloc request during program start-up (or |
832 | after trimming) will invoke sbrk, which needlessly wastes |
833 | time. |
834 | |
835 | Automatic rounding-up to page-size units is normally sufficient |
836 | to avoid measurable overhead, so the default is 0. However, in |
837 | systems where sbrk is relatively slow, it can pay to increase |
838 | this value, at the expense of carrying around more memory than |
839 | the program needs. |
840 | */ |
841 | |
842 | #define M_TOP_PAD -2 |
843 | |
844 | #ifndef DEFAULT_TOP_PAD |
845 | #define DEFAULT_TOP_PAD (0) |
846 | #endif |
847 | |
848 | /* |
849 | MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically |
850 | adjusted MMAP_THRESHOLD. |
851 | */ |
852 | |
853 | #ifndef DEFAULT_MMAP_THRESHOLD_MIN |
854 | #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024) |
855 | #endif |
856 | |
857 | #ifndef DEFAULT_MMAP_THRESHOLD_MAX |
858 | /* For 32-bit platforms we cannot increase the maximum mmap |
859 | threshold much because it is also the minimum value for the |
860 | maximum heap size and its alignment. Going above 512k (i.e., 1M |
861 | for new heaps) wastes too much address space. */ |
862 | # if __WORDSIZE == 32 |
863 | # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024) |
864 | # else |
865 | # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long)) |
866 | # endif |
867 | #endif |
868 | |
869 | /* |
870 | M_MMAP_THRESHOLD is the request size threshold for using mmap() |
871 | to service a request. Requests of at least this size that cannot |
872 | be allocated using already-existing space will be serviced via mmap. |
873 | (If enough normal freed space already exists it is used instead.) |
874 | |
875 | Using mmap segregates relatively large chunks of memory so that |
876 | they can be individually obtained and released from the host |
877 | system. A request serviced through mmap is never reused by any |
878 | other request (at least not directly; the system may just so |
879 | happen to remap successive requests to the same locations). |
880 | |
881 | Segregating space in this way has the benefits that: |
882 | |
883 | 1. Mmapped space can ALWAYS be individually released back |
884 | to the system, which helps keep the system level memory |
885 | demands of a long-lived program low. |
886 | 2. Mapped memory can never become `locked' between |
887 | other chunks, as can happen with normally allocated chunks, which |
888 | means that even trimming via malloc_trim would not release them. |
889 | 3. On some systems with "holes" in address spaces, mmap can obtain |
890 | memory that sbrk cannot. |
891 | |
892 | However, it has the disadvantages that: |
893 | |
894 | 1. The space cannot be reclaimed, consolidated, and then |
895 | used to service later requests, as happens with normal chunks. |
896 | 2. It can lead to more wastage because of mmap page alignment |
897 | requirements |
898 | 3. It causes malloc performance to be more dependent on host |
899 | system memory management support routines which may vary in |
900 | implementation quality and may impose arbitrary |
901 | limitations. Generally, servicing a request via normal |
902 | malloc steps is faster than going through a system's mmap. |
903 | |
904 | The advantages of mmap nearly always outweigh disadvantages for |
905 | "large" chunks, but the value of "large" varies across systems. The |
906 | default is an empirically derived value that works well in most |
907 | systems. |
908 | |
909 | |
910 | Update in 2006: |
911 | The above was written in 2001. Since then the world has changed a lot. |
912 | Memory got bigger. Applications got bigger. The virtual address space |
913 | layout in 32 bit linux changed. |
914 | |
915 | In the new situation, brk() and mmap space is shared and there are no |
916 | artificial limits on brk size imposed by the kernel. What is more, |
917 | applications have started using transient allocations larger than the |
918 | 128Kb as was imagined in 2001. |
919 | |
920 | The price for mmap is also high now; each time glibc mmaps from the |
921 | kernel, the kernel is forced to zero out the memory it gives to the |
922 | application. Zeroing memory is expensive and eats a lot of cache and |
923 | memory bandwidth. This has nothing to do with the efficiency of the |
924 | virtual memory system, by doing mmap the kernel just has no choice but |
925 | to zero. |
926 | |
927 | In 2001, the kernel had a maximum size for brk() which was about 800 |
928 | megabytes on 32 bit x86, at that point brk() would hit the first |
929 | mmaped shared libaries and couldn't expand anymore. With current 2.6 |
930 | kernels, the VA space layout is different and brk() and mmap |
931 | both can span the entire heap at will. |
932 | |
933 | Rather than using a static threshold for the brk/mmap tradeoff, |
934 | we are now using a simple dynamic one. The goal is still to avoid |
935 | fragmentation. The old goals we kept are |
936 | 1) try to get the long lived large allocations to use mmap() |
937 | 2) really large allocations should always use mmap() |
938 | and we're adding now: |
939 | 3) transient allocations should use brk() to avoid forcing the kernel |
940 | having to zero memory over and over again |
941 | |
942 | The implementation works with a sliding threshold, which is by default |
943 | limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts |
944 | out at 128Kb as per the 2001 default. |
945 | |
946 | This allows us to satisfy requirement 1) under the assumption that long |
947 | lived allocations are made early in the process' lifespan, before it has |
948 | started doing dynamic allocations of the same size (which will |
949 | increase the threshold). |
950 | |
951 | The upperbound on the threshold satisfies requirement 2) |
952 | |
953 | The threshold goes up in value when the application frees memory that was |
954 | allocated with the mmap allocator. The idea is that once the application |
955 | starts freeing memory of a certain size, it's highly probable that this is |
956 | a size the application uses for transient allocations. This estimator |
957 | is there to satisfy the new third requirement. |
958 | |
959 | */ |
960 | |
961 | #define M_MMAP_THRESHOLD -3 |
962 | |
963 | #ifndef DEFAULT_MMAP_THRESHOLD |
964 | #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN |
965 | #endif |
966 | |
967 | /* |
968 | M_MMAP_MAX is the maximum number of requests to simultaneously |
969 | service using mmap. This parameter exists because |
970 | some systems have a limited number of internal tables for |
971 | use by mmap, and using more than a few of them may degrade |
972 | performance. |
973 | |
974 | The default is set to a value that serves only as a safeguard. |
975 | Setting to 0 disables use of mmap for servicing large requests. |
976 | */ |
977 | |
978 | #define M_MMAP_MAX -4 |
979 | |
980 | #ifndef DEFAULT_MMAP_MAX |
981 | #define DEFAULT_MMAP_MAX (65536) |
982 | #endif |
983 | |
984 | #include <malloc.h> |
985 | |
986 | #ifndef RETURN_ADDRESS |
987 | #define RETURN_ADDRESS(X_) (NULL) |
988 | #endif |
989 | |
990 | /* Forward declarations. */ |
991 | struct malloc_chunk; |
992 | typedef struct malloc_chunk* mchunkptr; |
993 | |
994 | /* Internal routines. */ |
995 | |
996 | static void* _int_malloc(mstate, size_t); |
997 | static void _int_free(mstate, mchunkptr, int); |
998 | static void* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T, |
999 | INTERNAL_SIZE_T); |
1000 | static void* _int_memalign(mstate, size_t, size_t); |
1001 | static void* _mid_memalign(size_t, size_t, void *); |
1002 | |
1003 | static void malloc_printerr(const char *str) __attribute__ ((noreturn)); |
1004 | |
1005 | static void* mem2mem_check(void *p, size_t sz); |
1006 | static void top_check(void); |
1007 | static void munmap_chunk(mchunkptr p); |
1008 | #if HAVE_MREMAP |
1009 | static mchunkptr mremap_chunk(mchunkptr p, size_t new_size); |
1010 | #endif |
1011 | |
1012 | static void* malloc_check(size_t sz, const void *caller); |
1013 | static void free_check(void* mem, const void *caller); |
1014 | static void* realloc_check(void* oldmem, size_t bytes, |
1015 | const void *caller); |
1016 | static void* memalign_check(size_t alignment, size_t bytes, |
1017 | const void *caller); |
1018 | |
1019 | /* ------------------ MMAP support ------------------ */ |
1020 | |
1021 | |
1022 | #include <fcntl.h> |
1023 | #include <sys/mman.h> |
1024 | |
1025 | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) |
1026 | # define MAP_ANONYMOUS MAP_ANON |
1027 | #endif |
1028 | |
1029 | #ifndef MAP_NORESERVE |
1030 | # define MAP_NORESERVE 0 |
1031 | #endif |
1032 | |
1033 | #define MMAP(addr, size, prot, flags) \ |
1034 | __mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS|MAP_PRIVATE, -1, 0) |
1035 | |
1036 | |
1037 | /* |
1038 | ----------------------- Chunk representations ----------------------- |
1039 | */ |
1040 | |
1041 | |
1042 | /* |
1043 | This struct declaration is misleading (but accurate and necessary). |
1044 | It declares a "view" into memory allowing access to necessary |
1045 | fields at known offsets from a given base. See explanation below. |
1046 | */ |
1047 | |
1048 | struct malloc_chunk { |
1049 | |
1050 | INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */ |
1051 | INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */ |
1052 | |
1053 | struct malloc_chunk* fd; /* double links -- used only if free. */ |
1054 | struct malloc_chunk* bk; |
1055 | |
1056 | /* Only used for large blocks: pointer to next larger size. */ |
1057 | struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */ |
1058 | struct malloc_chunk* bk_nextsize; |
1059 | }; |
1060 | |
1061 | |
1062 | /* |
1063 | malloc_chunk details: |
1064 | |
1065 | (The following includes lightly edited explanations by Colin Plumb.) |
1066 | |
1067 | Chunks of memory are maintained using a `boundary tag' method as |
1068 | described in e.g., Knuth or Standish. (See the paper by Paul |
1069 | Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a |
1070 | survey of such techniques.) Sizes of free chunks are stored both |
1071 | in the front of each chunk and at the end. This makes |
1072 | consolidating fragmented chunks into bigger chunks very fast. The |
1073 | size fields also hold bits representing whether chunks are free or |
1074 | in use. |
1075 | |
1076 | An allocated chunk looks like this: |
1077 | |
1078 | |
1079 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1080 | | Size of previous chunk, if unallocated (P clear) | |
1081 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1082 | | Size of chunk, in bytes |A|M|P| |
1083 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1084 | | User data starts here... . |
1085 | . . |
1086 | . (malloc_usable_size() bytes) . |
1087 | . | |
1088 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1089 | | (size of chunk, but used for application data) | |
1090 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1091 | | Size of next chunk, in bytes |A|0|1| |
1092 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1093 | |
1094 | Where "chunk" is the front of the chunk for the purpose of most of |
1095 | the malloc code, but "mem" is the pointer that is returned to the |
1096 | user. "Nextchunk" is the beginning of the next contiguous chunk. |
1097 | |
1098 | Chunks always begin on even word boundaries, so the mem portion |
1099 | (which is returned to the user) is also on an even word boundary, and |
1100 | thus at least double-word aligned. |
1101 | |
1102 | Free chunks are stored in circular doubly-linked lists, and look like this: |
1103 | |
1104 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1105 | | Size of previous chunk, if unallocated (P clear) | |
1106 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1107 | `head:' | Size of chunk, in bytes |A|0|P| |
1108 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1109 | | Forward pointer to next chunk in list | |
1110 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1111 | | Back pointer to previous chunk in list | |
1112 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1113 | | Unused space (may be 0 bytes long) . |
1114 | . . |
1115 | . | |
1116 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1117 | `foot:' | Size of chunk, in bytes | |
1118 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1119 | | Size of next chunk, in bytes |A|0|0| |
1120 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1121 | |
1122 | The P (PREV_INUSE) bit, stored in the unused low-order bit of the |
1123 | chunk size (which is always a multiple of two words), is an in-use |
1124 | bit for the *previous* chunk. If that bit is *clear*, then the |
1125 | word before the current chunk size contains the previous chunk |
1126 | size, and can be used to find the front of the previous chunk. |
1127 | The very first chunk allocated always has this bit set, |
1128 | preventing access to non-existent (or non-owned) memory. If |
1129 | prev_inuse is set for any given chunk, then you CANNOT determine |
1130 | the size of the previous chunk, and might even get a memory |
1131 | addressing fault when trying to do so. |
1132 | |
1133 | The A (NON_MAIN_ARENA) bit is cleared for chunks on the initial, |
1134 | main arena, described by the main_arena variable. When additional |
1135 | threads are spawned, each thread receives its own arena (up to a |
1136 | configurable limit, after which arenas are reused for multiple |
1137 | threads), and the chunks in these arenas have the A bit set. To |
1138 | find the arena for a chunk on such a non-main arena, heap_for_ptr |
1139 | performs a bit mask operation and indirection through the ar_ptr |
1140 | member of the per-heap header heap_info (see arena.c). |
1141 | |
1142 | Note that the `foot' of the current chunk is actually represented |
1143 | as the prev_size of the NEXT chunk. This makes it easier to |
1144 | deal with alignments etc but can be very confusing when trying |
1145 | to extend or adapt this code. |
1146 | |
1147 | The three exceptions to all this are: |
1148 | |
1149 | 1. The special chunk `top' doesn't bother using the |
1150 | trailing size field since there is no next contiguous chunk |
1151 | that would have to index off it. After initialization, `top' |
1152 | is forced to always exist. If it would become less than |
1153 | MINSIZE bytes long, it is replenished. |
1154 | |
1155 | 2. Chunks allocated via mmap, which have the second-lowest-order |
1156 | bit M (IS_MMAPPED) set in their size fields. Because they are |
1157 | allocated one-by-one, each must contain its own trailing size |
1158 | field. If the M bit is set, the other bits are ignored |
1159 | (because mmapped chunks are neither in an arena, nor adjacent |
1160 | to a freed chunk). The M bit is also used for chunks which |
1161 | originally came from a dumped heap via malloc_set_state in |
1162 | hooks.c. |
1163 | |
1164 | 3. Chunks in fastbins are treated as allocated chunks from the |
1165 | point of view of the chunk allocator. They are consolidated |
1166 | with their neighbors only in bulk, in malloc_consolidate. |
1167 | */ |
1168 | |
1169 | /* |
1170 | ---------- Size and alignment checks and conversions ---------- |
1171 | */ |
1172 | |
1173 | /* conversion from malloc headers to user pointers, and back */ |
1174 | |
1175 | #define chunk2mem(p) ((void*)((char*)(p) + 2*SIZE_SZ)) |
1176 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) |
1177 | |
1178 | /* The smallest possible chunk */ |
1179 | #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize)) |
1180 | |
1181 | /* The smallest size we can malloc is an aligned minimal chunk */ |
1182 | |
1183 | #define MINSIZE \ |
1184 | (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)) |
1185 | |
1186 | /* Check if m has acceptable alignment */ |
1187 | |
1188 | #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0) |
1189 | |
1190 | #define misaligned_chunk(p) \ |
1191 | ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \ |
1192 | & MALLOC_ALIGN_MASK) |
1193 | |
1194 | |
1195 | /* |
1196 | Check if a request is so large that it would wrap around zero when |
1197 | padded and aligned. To simplify some other code, the bound is made |
1198 | low enough so that adding MINSIZE will also not wrap around zero. |
1199 | */ |
1200 | |
1201 | #define REQUEST_OUT_OF_RANGE(req) \ |
1202 | ((unsigned long) (req) >= \ |
1203 | (unsigned long) (INTERNAL_SIZE_T) (-2 * MINSIZE)) |
1204 | |
1205 | /* pad request bytes into a usable size -- internal version */ |
1206 | |
1207 | #define request2size(req) \ |
1208 | (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \ |
1209 | MINSIZE : \ |
1210 | ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK) |
1211 | |
1212 | /* Same, except also perform an argument and result check. First, we check |
1213 | that the padding done by request2size didn't result in an integer |
1214 | overflow. Then we check (using REQUEST_OUT_OF_RANGE) that the resulting |
1215 | size isn't so large that a later alignment would lead to another integer |
1216 | overflow. */ |
1217 | #define checked_request2size(req, sz) \ |
1218 | ({ \ |
1219 | (sz) = request2size (req); \ |
1220 | if (((sz) < (req)) \ |
1221 | || REQUEST_OUT_OF_RANGE (sz)) \ |
1222 | { \ |
1223 | __set_errno (ENOMEM); \ |
1224 | return 0; \ |
1225 | } \ |
1226 | }) |
1227 | |
1228 | /* |
1229 | --------------- Physical chunk operations --------------- |
1230 | */ |
1231 | |
1232 | |
1233 | /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ |
1234 | #define PREV_INUSE 0x1 |
1235 | |
1236 | /* extract inuse bit of previous chunk */ |
1237 | #define prev_inuse(p) ((p)->mchunk_size & PREV_INUSE) |
1238 | |
1239 | |
1240 | /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ |
1241 | #define IS_MMAPPED 0x2 |
1242 | |
1243 | /* check for mmap()'ed chunk */ |
1244 | #define chunk_is_mmapped(p) ((p)->mchunk_size & IS_MMAPPED) |
1245 | |
1246 | |
1247 | /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained |
1248 | from a non-main arena. This is only set immediately before handing |
1249 | the chunk to the user, if necessary. */ |
1250 | #define NON_MAIN_ARENA 0x4 |
1251 | |
1252 | /* Check for chunk from main arena. */ |
1253 | #define chunk_main_arena(p) (((p)->mchunk_size & NON_MAIN_ARENA) == 0) |
1254 | |
1255 | /* Mark a chunk as not being on the main arena. */ |
1256 | #define set_non_main_arena(p) ((p)->mchunk_size |= NON_MAIN_ARENA) |
1257 | |
1258 | |
1259 | /* |
1260 | Bits to mask off when extracting size |
1261 | |
1262 | Note: IS_MMAPPED is intentionally not masked off from size field in |
1263 | macros for which mmapped chunks should never be seen. This should |
1264 | cause helpful core dumps to occur if it is tried by accident by |
1265 | people extending or adapting this malloc. |
1266 | */ |
1267 | #define SIZE_BITS (PREV_INUSE | IS_MMAPPED | NON_MAIN_ARENA) |
1268 | |
1269 | /* Get size, ignoring use bits */ |
1270 | #define chunksize(p) (chunksize_nomask (p) & ~(SIZE_BITS)) |
1271 | |
1272 | /* Like chunksize, but do not mask SIZE_BITS. */ |
1273 | #define chunksize_nomask(p) ((p)->mchunk_size) |
1274 | |
1275 | /* Ptr to next physical malloc_chunk. */ |
1276 | #define next_chunk(p) ((mchunkptr) (((char *) (p)) + chunksize (p))) |
1277 | |
1278 | /* Size of the chunk below P. Only valid if !prev_inuse (P). */ |
1279 | #define prev_size(p) ((p)->mchunk_prev_size) |
1280 | |
1281 | /* Set the size of the chunk below P. Only valid if !prev_inuse (P). */ |
1282 | #define set_prev_size(p, sz) ((p)->mchunk_prev_size = (sz)) |
1283 | |
1284 | /* Ptr to previous physical malloc_chunk. Only valid if !prev_inuse (P). */ |
1285 | #define prev_chunk(p) ((mchunkptr) (((char *) (p)) - prev_size (p))) |
1286 | |
1287 | /* Treat space at ptr + offset as a chunk */ |
1288 | #define chunk_at_offset(p, s) ((mchunkptr) (((char *) (p)) + (s))) |
1289 | |
1290 | /* extract p's inuse bit */ |
1291 | #define inuse(p) \ |
1292 | ((((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size) & PREV_INUSE) |
1293 | |
1294 | /* set/clear chunk as being inuse without otherwise disturbing */ |
1295 | #define set_inuse(p) \ |
1296 | ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size |= PREV_INUSE |
1297 | |
1298 | #define clear_inuse(p) \ |
1299 | ((mchunkptr) (((char *) (p)) + chunksize (p)))->mchunk_size &= ~(PREV_INUSE) |
1300 | |
1301 | |
1302 | /* check/set/clear inuse bits in known places */ |
1303 | #define inuse_bit_at_offset(p, s) \ |
1304 | (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size & PREV_INUSE) |
1305 | |
1306 | #define set_inuse_bit_at_offset(p, s) \ |
1307 | (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size |= PREV_INUSE) |
1308 | |
1309 | #define clear_inuse_bit_at_offset(p, s) \ |
1310 | (((mchunkptr) (((char *) (p)) + (s)))->mchunk_size &= ~(PREV_INUSE)) |
1311 | |
1312 | |
1313 | /* Set size at head, without disturbing its use bit */ |
1314 | #define set_head_size(p, s) ((p)->mchunk_size = (((p)->mchunk_size & SIZE_BITS) | (s))) |
1315 | |
1316 | /* Set size/use field */ |
1317 | #define set_head(p, s) ((p)->mchunk_size = (s)) |
1318 | |
1319 | /* Set size at footer (only when chunk is not in use) */ |
1320 | #define (p, s) (((mchunkptr) ((char *) (p) + (s)))->mchunk_prev_size = (s)) |
1321 | |
1322 | |
1323 | #pragma GCC poison mchunk_size |
1324 | #pragma GCC poison mchunk_prev_size |
1325 | |
1326 | /* |
1327 | -------------------- Internal data structures -------------------- |
1328 | |
1329 | All internal state is held in an instance of malloc_state defined |
1330 | below. There are no other static variables, except in two optional |
1331 | cases: |
1332 | * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above. |
1333 | * If mmap doesn't support MAP_ANONYMOUS, a dummy file descriptor |
1334 | for mmap. |
1335 | |
1336 | Beware of lots of tricks that minimize the total bookkeeping space |
1337 | requirements. The result is a little over 1K bytes (for 4byte |
1338 | pointers and size_t.) |
1339 | */ |
1340 | |
1341 | /* |
1342 | Bins |
1343 | |
1344 | An array of bin headers for free chunks. Each bin is doubly |
1345 | linked. The bins are approximately proportionally (log) spaced. |
1346 | There are a lot of these bins (128). This may look excessive, but |
1347 | works very well in practice. Most bins hold sizes that are |
1348 | unusual as malloc request sizes, but are more usual for fragments |
1349 | and consolidated sets of chunks, which is what these bins hold, so |
1350 | they can be found quickly. All procedures maintain the invariant |
1351 | that no consolidated chunk physically borders another one, so each |
1352 | chunk in a list is known to be preceeded and followed by either |
1353 | inuse chunks or the ends of memory. |
1354 | |
1355 | Chunks in bins are kept in size order, with ties going to the |
1356 | approximately least recently used chunk. Ordering isn't needed |
1357 | for the small bins, which all contain the same-sized chunks, but |
1358 | facilitates best-fit allocation for larger chunks. These lists |
1359 | are just sequential. Keeping them in order almost never requires |
1360 | enough traversal to warrant using fancier ordered data |
1361 | structures. |
1362 | |
1363 | Chunks of the same size are linked with the most |
1364 | recently freed at the front, and allocations are taken from the |
1365 | back. This results in LRU (FIFO) allocation order, which tends |
1366 | to give each chunk an equal opportunity to be consolidated with |
1367 | adjacent freed chunks, resulting in larger free chunks and less |
1368 | fragmentation. |
1369 | |
1370 | To simplify use in double-linked lists, each bin header acts |
1371 | as a malloc_chunk. This avoids special-casing for headers. |
1372 | But to conserve space and improve locality, we allocate |
1373 | only the fd/bk pointers of bins, and then use repositioning tricks |
1374 | to treat these as the fields of a malloc_chunk*. |
1375 | */ |
1376 | |
1377 | typedef struct malloc_chunk *mbinptr; |
1378 | |
1379 | /* addressing -- note that bin_at(0) does not exist */ |
1380 | #define bin_at(m, i) \ |
1381 | (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \ |
1382 | - offsetof (struct malloc_chunk, fd)) |
1383 | |
1384 | /* analog of ++bin */ |
1385 | #define next_bin(b) ((mbinptr) ((char *) (b) + (sizeof (mchunkptr) << 1))) |
1386 | |
1387 | /* Reminders about list directionality within bins */ |
1388 | #define first(b) ((b)->fd) |
1389 | #define last(b) ((b)->bk) |
1390 | |
1391 | /* Take a chunk off a bin list */ |
1392 | #define unlink(AV, P, BK, FD) { \ |
1393 | if (__builtin_expect (chunksize(P) != prev_size (next_chunk(P)), 0)) \ |
1394 | malloc_printerr ("corrupted size vs. prev_size"); \ |
1395 | FD = P->fd; \ |
1396 | BK = P->bk; \ |
1397 | if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \ |
1398 | malloc_printerr ("corrupted double-linked list"); \ |
1399 | else { \ |
1400 | FD->bk = BK; \ |
1401 | BK->fd = FD; \ |
1402 | if (!in_smallbin_range (chunksize_nomask (P)) \ |
1403 | && __builtin_expect (P->fd_nextsize != NULL, 0)) { \ |
1404 | if (__builtin_expect (P->fd_nextsize->bk_nextsize != P, 0) \ |
1405 | || __builtin_expect (P->bk_nextsize->fd_nextsize != P, 0)) \ |
1406 | malloc_printerr ("corrupted double-linked list (not small)"); \ |
1407 | if (FD->fd_nextsize == NULL) { \ |
1408 | if (P->fd_nextsize == P) \ |
1409 | FD->fd_nextsize = FD->bk_nextsize = FD; \ |
1410 | else { \ |
1411 | FD->fd_nextsize = P->fd_nextsize; \ |
1412 | FD->bk_nextsize = P->bk_nextsize; \ |
1413 | P->fd_nextsize->bk_nextsize = FD; \ |
1414 | P->bk_nextsize->fd_nextsize = FD; \ |
1415 | } \ |
1416 | } else { \ |
1417 | P->fd_nextsize->bk_nextsize = P->bk_nextsize; \ |
1418 | P->bk_nextsize->fd_nextsize = P->fd_nextsize; \ |
1419 | } \ |
1420 | } \ |
1421 | } \ |
1422 | } |
1423 | |
1424 | /* |
1425 | Indexing |
1426 | |
1427 | Bins for sizes < 512 bytes contain chunks of all the same size, spaced |
1428 | 8 bytes apart. Larger bins are approximately logarithmically spaced: |
1429 | |
1430 | 64 bins of size 8 |
1431 | 32 bins of size 64 |
1432 | 16 bins of size 512 |
1433 | 8 bins of size 4096 |
1434 | 4 bins of size 32768 |
1435 | 2 bins of size 262144 |
1436 | 1 bin of size what's left |
1437 | |
1438 | There is actually a little bit of slop in the numbers in bin_index |
1439 | for the sake of speed. This makes no difference elsewhere. |
1440 | |
1441 | The bins top out around 1MB because we expect to service large |
1442 | requests via mmap. |
1443 | |
1444 | Bin 0 does not exist. Bin 1 is the unordered list; if that would be |
1445 | a valid chunk size the small bins are bumped up one. |
1446 | */ |
1447 | |
1448 | #define NBINS 128 |
1449 | #define NSMALLBINS 64 |
1450 | #define SMALLBIN_WIDTH MALLOC_ALIGNMENT |
1451 | #define SMALLBIN_CORRECTION (MALLOC_ALIGNMENT > 2 * SIZE_SZ) |
1452 | #define MIN_LARGE_SIZE ((NSMALLBINS - SMALLBIN_CORRECTION) * SMALLBIN_WIDTH) |
1453 | |
1454 | #define in_smallbin_range(sz) \ |
1455 | ((unsigned long) (sz) < (unsigned long) MIN_LARGE_SIZE) |
1456 | |
1457 | #define smallbin_index(sz) \ |
1458 | ((SMALLBIN_WIDTH == 16 ? (((unsigned) (sz)) >> 4) : (((unsigned) (sz)) >> 3))\ |
1459 | + SMALLBIN_CORRECTION) |
1460 | |
1461 | #define largebin_index_32(sz) \ |
1462 | (((((unsigned long) (sz)) >> 6) <= 38) ? 56 + (((unsigned long) (sz)) >> 6) :\ |
1463 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
1464 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
1465 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
1466 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
1467 | 126) |
1468 | |
1469 | #define largebin_index_32_big(sz) \ |
1470 | (((((unsigned long) (sz)) >> 6) <= 45) ? 49 + (((unsigned long) (sz)) >> 6) :\ |
1471 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
1472 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
1473 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
1474 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
1475 | 126) |
1476 | |
1477 | // XXX It remains to be seen whether it is good to keep the widths of |
1478 | // XXX the buckets the same or whether it should be scaled by a factor |
1479 | // XXX of two as well. |
1480 | #define largebin_index_64(sz) \ |
1481 | (((((unsigned long) (sz)) >> 6) <= 48) ? 48 + (((unsigned long) (sz)) >> 6) :\ |
1482 | ((((unsigned long) (sz)) >> 9) <= 20) ? 91 + (((unsigned long) (sz)) >> 9) :\ |
1483 | ((((unsigned long) (sz)) >> 12) <= 10) ? 110 + (((unsigned long) (sz)) >> 12) :\ |
1484 | ((((unsigned long) (sz)) >> 15) <= 4) ? 119 + (((unsigned long) (sz)) >> 15) :\ |
1485 | ((((unsigned long) (sz)) >> 18) <= 2) ? 124 + (((unsigned long) (sz)) >> 18) :\ |
1486 | 126) |
1487 | |
1488 | #define largebin_index(sz) \ |
1489 | (SIZE_SZ == 8 ? largebin_index_64 (sz) \ |
1490 | : MALLOC_ALIGNMENT == 16 ? largebin_index_32_big (sz) \ |
1491 | : largebin_index_32 (sz)) |
1492 | |
1493 | #define bin_index(sz) \ |
1494 | ((in_smallbin_range (sz)) ? smallbin_index (sz) : largebin_index (sz)) |
1495 | |
1496 | |
1497 | /* |
1498 | Unsorted chunks |
1499 | |
1500 | All remainders from chunk splits, as well as all returned chunks, |
1501 | are first placed in the "unsorted" bin. They are then placed |
1502 | in regular bins after malloc gives them ONE chance to be used before |
1503 | binning. So, basically, the unsorted_chunks list acts as a queue, |
1504 | with chunks being placed on it in free (and malloc_consolidate), |
1505 | and taken off (to be either used or placed in bins) in malloc. |
1506 | |
1507 | The NON_MAIN_ARENA flag is never set for unsorted chunks, so it |
1508 | does not have to be taken into account in size comparisons. |
1509 | */ |
1510 | |
1511 | /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */ |
1512 | #define unsorted_chunks(M) (bin_at (M, 1)) |
1513 | |
1514 | /* |
1515 | Top |
1516 | |
1517 | The top-most available chunk (i.e., the one bordering the end of |
1518 | available memory) is treated specially. It is never included in |
1519 | any bin, is used only if no other chunk is available, and is |
1520 | released back to the system if it is very large (see |
1521 | M_TRIM_THRESHOLD). Because top initially |
1522 | points to its own bin with initial zero size, thus forcing |
1523 | extension on the first malloc request, we avoid having any special |
1524 | code in malloc to check whether it even exists yet. But we still |
1525 | need to do so when getting memory from system, so we make |
1526 | initial_top treat the bin as a legal but unusable chunk during the |
1527 | interval between initialization and the first call to |
1528 | sysmalloc. (This is somewhat delicate, since it relies on |
1529 | the 2 preceding words to be zero during this interval as well.) |
1530 | */ |
1531 | |
1532 | /* Conveniently, the unsorted bin can be used as dummy top on first call */ |
1533 | #define initial_top(M) (unsorted_chunks (M)) |
1534 | |
1535 | /* |
1536 | Binmap |
1537 | |
1538 | To help compensate for the large number of bins, a one-level index |
1539 | structure is used for bin-by-bin searching. `binmap' is a |
1540 | bitvector recording whether bins are definitely empty so they can |
1541 | be skipped over during during traversals. The bits are NOT always |
1542 | cleared as soon as bins are empty, but instead only |
1543 | when they are noticed to be empty during traversal in malloc. |
1544 | */ |
1545 | |
1546 | /* Conservatively use 32 bits per map word, even if on 64bit system */ |
1547 | #define BINMAPSHIFT 5 |
1548 | #define BITSPERMAP (1U << BINMAPSHIFT) |
1549 | #define BINMAPSIZE (NBINS / BITSPERMAP) |
1550 | |
1551 | #define idx2block(i) ((i) >> BINMAPSHIFT) |
1552 | #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT) - 1)))) |
1553 | |
1554 | #define mark_bin(m, i) ((m)->binmap[idx2block (i)] |= idx2bit (i)) |
1555 | #define unmark_bin(m, i) ((m)->binmap[idx2block (i)] &= ~(idx2bit (i))) |
1556 | #define get_binmap(m, i) ((m)->binmap[idx2block (i)] & idx2bit (i)) |
1557 | |
1558 | /* |
1559 | Fastbins |
1560 | |
1561 | An array of lists holding recently freed small chunks. Fastbins |
1562 | are not doubly linked. It is faster to single-link them, and |
1563 | since chunks are never removed from the middles of these lists, |
1564 | double linking is not necessary. Also, unlike regular bins, they |
1565 | are not even processed in FIFO order (they use faster LIFO) since |
1566 | ordering doesn't much matter in the transient contexts in which |
1567 | fastbins are normally used. |
1568 | |
1569 | Chunks in fastbins keep their inuse bit set, so they cannot |
1570 | be consolidated with other free chunks. malloc_consolidate |
1571 | releases all chunks in fastbins and consolidates them with |
1572 | other free chunks. |
1573 | */ |
1574 | |
1575 | typedef struct malloc_chunk *mfastbinptr; |
1576 | #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx]) |
1577 | |
1578 | /* offset 2 to use otherwise unindexable first 2 bins */ |
1579 | #define fastbin_index(sz) \ |
1580 | ((((unsigned int) (sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2) |
1581 | |
1582 | |
1583 | /* The maximum fastbin request size we support */ |
1584 | #define MAX_FAST_SIZE (80 * SIZE_SZ / 4) |
1585 | |
1586 | #define NFASTBINS (fastbin_index (request2size (MAX_FAST_SIZE)) + 1) |
1587 | |
1588 | /* |
1589 | FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free() |
1590 | that triggers automatic consolidation of possibly-surrounding |
1591 | fastbin chunks. This is a heuristic, so the exact value should not |
1592 | matter too much. It is defined at half the default trim threshold as a |
1593 | compromise heuristic to only attempt consolidation if it is likely |
1594 | to lead to trimming. However, it is not dynamically tunable, since |
1595 | consolidation reduces fragmentation surrounding large chunks even |
1596 | if trimming is not used. |
1597 | */ |
1598 | |
1599 | #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL) |
1600 | |
1601 | /* |
1602 | NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous |
1603 | regions. Otherwise, contiguity is exploited in merging together, |
1604 | when possible, results from consecutive MORECORE calls. |
1605 | |
1606 | The initial value comes from MORECORE_CONTIGUOUS, but is |
1607 | changed dynamically if mmap is ever used as an sbrk substitute. |
1608 | */ |
1609 | |
1610 | #define NONCONTIGUOUS_BIT (2U) |
1611 | |
1612 | #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0) |
1613 | #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0) |
1614 | #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT) |
1615 | #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT) |
1616 | |
1617 | /* Maximum size of memory handled in fastbins. */ |
1618 | static INTERNAL_SIZE_T global_max_fast; |
1619 | |
1620 | /* |
1621 | Set value of max_fast. |
1622 | Use impossibly small value if 0. |
1623 | Precondition: there are no existing fastbin chunks in the main arena. |
1624 | Since do_check_malloc_state () checks this, we call malloc_consolidate () |
1625 | before changing max_fast. Note other arenas will leak their fast bin |
1626 | entries if max_fast is reduced. |
1627 | */ |
1628 | |
1629 | #define set_max_fast(s) \ |
1630 | global_max_fast = (((s) == 0) \ |
1631 | ? MIN_CHUNK_SIZE / 2 : ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK)) |
1632 | |
1633 | static inline INTERNAL_SIZE_T |
1634 | get_max_fast (void) |
1635 | { |
1636 | /* Tell the GCC optimizers that global_max_fast is never larger |
1637 | than MAX_FAST_SIZE. This avoids out-of-bounds array accesses in |
1638 | _int_malloc after constant propagation of the size parameter. |
1639 | (The code never executes because malloc preserves the |
1640 | global_max_fast invariant, but the optimizers may not recognize |
1641 | this.) */ |
1642 | if (global_max_fast > MAX_FAST_SIZE) |
1643 | __builtin_unreachable (); |
1644 | return global_max_fast; |
1645 | } |
1646 | |
1647 | /* |
1648 | ----------- Internal state representation and initialization ----------- |
1649 | */ |
1650 | |
1651 | /* |
1652 | have_fastchunks indicates that there are probably some fastbin chunks. |
1653 | It is set true on entering a chunk into any fastbin, and cleared early in |
1654 | malloc_consolidate. The value is approximate since it may be set when there |
1655 | are no fastbin chunks, or it may be clear even if there are fastbin chunks |
1656 | available. Given it's sole purpose is to reduce number of redundant calls to |
1657 | malloc_consolidate, it does not affect correctness. As a result we can safely |
1658 | use relaxed atomic accesses. |
1659 | */ |
1660 | |
1661 | |
1662 | struct malloc_state |
1663 | { |
1664 | /* Serialize access. */ |
1665 | __libc_lock_define (, mutex); |
1666 | |
1667 | /* Flags (formerly in max_fast). */ |
1668 | int flags; |
1669 | |
1670 | /* Set if the fastbin chunks contain recently inserted free blocks. */ |
1671 | /* Note this is a bool but not all targets support atomics on booleans. */ |
1672 | int have_fastchunks; |
1673 | |
1674 | /* Fastbins */ |
1675 | mfastbinptr fastbinsY[NFASTBINS]; |
1676 | |
1677 | /* Base of the topmost chunk -- not otherwise kept in a bin */ |
1678 | mchunkptr top; |
1679 | |
1680 | /* The remainder from the most recent split of a small request */ |
1681 | mchunkptr last_remainder; |
1682 | |
1683 | /* Normal bins packed as described above */ |
1684 | mchunkptr bins[NBINS * 2 - 2]; |
1685 | |
1686 | /* Bitmap of bins */ |
1687 | unsigned int binmap[BINMAPSIZE]; |
1688 | |
1689 | /* Linked list */ |
1690 | struct malloc_state *next; |
1691 | |
1692 | /* Linked list for free arenas. Access to this field is serialized |
1693 | by free_list_lock in arena.c. */ |
1694 | struct malloc_state *next_free; |
1695 | |
1696 | /* Number of threads attached to this arena. 0 if the arena is on |
1697 | the free list. Access to this field is serialized by |
1698 | free_list_lock in arena.c. */ |
1699 | INTERNAL_SIZE_T attached_threads; |
1700 | |
1701 | /* Memory allocated from the system in this arena. */ |
1702 | INTERNAL_SIZE_T system_mem; |
1703 | INTERNAL_SIZE_T max_system_mem; |
1704 | }; |
1705 | |
1706 | struct malloc_par |
1707 | { |
1708 | /* Tunable parameters */ |
1709 | unsigned long trim_threshold; |
1710 | INTERNAL_SIZE_T top_pad; |
1711 | INTERNAL_SIZE_T mmap_threshold; |
1712 | INTERNAL_SIZE_T arena_test; |
1713 | INTERNAL_SIZE_T arena_max; |
1714 | |
1715 | /* Memory map support */ |
1716 | int n_mmaps; |
1717 | int n_mmaps_max; |
1718 | int max_n_mmaps; |
1719 | /* the mmap_threshold is dynamic, until the user sets |
1720 | it manually, at which point we need to disable any |
1721 | dynamic behavior. */ |
1722 | int no_dyn_threshold; |
1723 | |
1724 | /* Statistics */ |
1725 | INTERNAL_SIZE_T mmapped_mem; |
1726 | INTERNAL_SIZE_T max_mmapped_mem; |
1727 | |
1728 | /* First address handed out by MORECORE/sbrk. */ |
1729 | char *sbrk_base; |
1730 | |
1731 | #if USE_TCACHE |
1732 | /* Maximum number of buckets to use. */ |
1733 | size_t tcache_bins; |
1734 | size_t tcache_max_bytes; |
1735 | /* Maximum number of chunks in each bucket. */ |
1736 | size_t tcache_count; |
1737 | /* Maximum number of chunks to remove from the unsorted list, which |
1738 | aren't used to prefill the cache. */ |
1739 | size_t tcache_unsorted_limit; |
1740 | #endif |
1741 | }; |
1742 | |
1743 | /* There are several instances of this struct ("arenas") in this |
1744 | malloc. If you are adapting this malloc in a way that does NOT use |
1745 | a static or mmapped malloc_state, you MUST explicitly zero-fill it |
1746 | before using. This malloc relies on the property that malloc_state |
1747 | is initialized to all zeroes (as is true of C statics). */ |
1748 | |
1749 | static struct malloc_state main_arena = |
1750 | { |
1751 | .mutex = _LIBC_LOCK_INITIALIZER, |
1752 | .next = &main_arena, |
1753 | .attached_threads = 1 |
1754 | }; |
1755 | |
1756 | /* These variables are used for undumping support. Chunked are marked |
1757 | as using mmap, but we leave them alone if they fall into this |
1758 | range. NB: The chunk size for these chunks only includes the |
1759 | initial size field (of SIZE_SZ bytes), there is no trailing size |
1760 | field (unlike with regular mmapped chunks). */ |
1761 | static mchunkptr dumped_main_arena_start; /* Inclusive. */ |
1762 | static mchunkptr dumped_main_arena_end; /* Exclusive. */ |
1763 | |
1764 | /* True if the pointer falls into the dumped arena. Use this after |
1765 | chunk_is_mmapped indicates a chunk is mmapped. */ |
1766 | #define DUMPED_MAIN_ARENA_CHUNK(p) \ |
1767 | ((p) >= dumped_main_arena_start && (p) < dumped_main_arena_end) |
1768 | |
1769 | /* There is only one instance of the malloc parameters. */ |
1770 | |
1771 | static struct malloc_par mp_ = |
1772 | { |
1773 | .top_pad = DEFAULT_TOP_PAD, |
1774 | .n_mmaps_max = DEFAULT_MMAP_MAX, |
1775 | .mmap_threshold = DEFAULT_MMAP_THRESHOLD, |
1776 | .trim_threshold = DEFAULT_TRIM_THRESHOLD, |
1777 | #define NARENAS_FROM_NCORES(n) ((n) * (sizeof (long) == 4 ? 2 : 8)) |
1778 | .arena_test = NARENAS_FROM_NCORES (1) |
1779 | #if USE_TCACHE |
1780 | , |
1781 | .tcache_count = TCACHE_FILL_COUNT, |
1782 | .tcache_bins = TCACHE_MAX_BINS, |
1783 | .tcache_max_bytes = tidx2usize (TCACHE_MAX_BINS-1), |
1784 | .tcache_unsorted_limit = 0 /* No limit. */ |
1785 | #endif |
1786 | }; |
1787 | |
1788 | /* |
1789 | Initialize a malloc_state struct. |
1790 | |
1791 | This is called from ptmalloc_init () or from _int_new_arena () |
1792 | when creating a new arena. |
1793 | */ |
1794 | |
1795 | static void |
1796 | malloc_init_state (mstate av) |
1797 | { |
1798 | int i; |
1799 | mbinptr bin; |
1800 | |
1801 | /* Establish circular links for normal bins */ |
1802 | for (i = 1; i < NBINS; ++i) |
1803 | { |
1804 | bin = bin_at (av, i); |
1805 | bin->fd = bin->bk = bin; |
1806 | } |
1807 | |
1808 | #if MORECORE_CONTIGUOUS |
1809 | if (av != &main_arena) |
1810 | #endif |
1811 | set_noncontiguous (av); |
1812 | if (av == &main_arena) |
1813 | set_max_fast (DEFAULT_MXFAST); |
1814 | atomic_store_relaxed (&av->have_fastchunks, false); |
1815 | |
1816 | av->top = initial_top (av); |
1817 | } |
1818 | |
1819 | /* |
1820 | Other internal utilities operating on mstates |
1821 | */ |
1822 | |
1823 | static void *sysmalloc (INTERNAL_SIZE_T, mstate); |
1824 | static int systrim (size_t, mstate); |
1825 | static void malloc_consolidate (mstate); |
1826 | |
1827 | |
1828 | /* -------------- Early definitions for debugging hooks ---------------- */ |
1829 | |
1830 | /* Define and initialize the hook variables. These weak definitions must |
1831 | appear before any use of the variables in a function (arena.c uses one). */ |
1832 | #ifndef weak_variable |
1833 | /* In GNU libc we want the hook variables to be weak definitions to |
1834 | avoid a problem with Emacs. */ |
1835 | # define weak_variable weak_function |
1836 | #endif |
1837 | |
1838 | /* Forward declarations. */ |
1839 | static void *malloc_hook_ini (size_t sz, |
1840 | const void *caller) __THROW; |
1841 | static void *realloc_hook_ini (void *ptr, size_t sz, |
1842 | const void *caller) __THROW; |
1843 | static void *memalign_hook_ini (size_t alignment, size_t sz, |
1844 | const void *caller) __THROW; |
1845 | |
1846 | #if HAVE_MALLOC_INIT_HOOK |
1847 | void weak_variable (*__malloc_initialize_hook) (void) = NULL; |
1848 | compat_symbol (libc, __malloc_initialize_hook, |
1849 | __malloc_initialize_hook, GLIBC_2_0); |
1850 | #endif |
1851 | |
1852 | void weak_variable (*__free_hook) (void *__ptr, |
1853 | const void *) = NULL; |
1854 | void *weak_variable (*__malloc_hook) |
1855 | (size_t __size, const void *) = malloc_hook_ini; |
1856 | void *weak_variable (*__realloc_hook) |
1857 | (void *__ptr, size_t __size, const void *) |
1858 | = realloc_hook_ini; |
1859 | void *weak_variable (*__memalign_hook) |
1860 | (size_t __alignment, size_t __size, const void *) |
1861 | = memalign_hook_ini; |
1862 | void weak_variable (*__after_morecore_hook) (void) = NULL; |
1863 | |
1864 | /* This function is called from the arena shutdown hook, to free the |
1865 | thread cache (if it exists). */ |
1866 | static void tcache_thread_shutdown (void); |
1867 | |
1868 | /* ------------------ Testing support ----------------------------------*/ |
1869 | |
1870 | static int perturb_byte; |
1871 | |
1872 | static void |
1873 | alloc_perturb (char *p, size_t n) |
1874 | { |
1875 | if (__glibc_unlikely (perturb_byte)) |
1876 | memset (p, perturb_byte ^ 0xff, n); |
1877 | } |
1878 | |
1879 | static void |
1880 | free_perturb (char *p, size_t n) |
1881 | { |
1882 | if (__glibc_unlikely (perturb_byte)) |
1883 | memset (p, perturb_byte, n); |
1884 | } |
1885 | |
1886 | |
1887 | |
1888 | #include <stap-probe.h> |
1889 | |
1890 | /* ------------------- Support for multiple arenas -------------------- */ |
1891 | #include "arena.c" |
1892 | |
1893 | /* |
1894 | Debugging support |
1895 | |
1896 | These routines make a number of assertions about the states |
1897 | of data structures that should be true at all times. If any |
1898 | are not true, it's very likely that a user program has somehow |
1899 | trashed memory. (It's also possible that there is a coding error |
1900 | in malloc. In which case, please report it!) |
1901 | */ |
1902 | |
1903 | #if !MALLOC_DEBUG |
1904 | |
1905 | # define check_chunk(A, P) |
1906 | # define check_free_chunk(A, P) |
1907 | # define check_inuse_chunk(A, P) |
1908 | # define check_remalloced_chunk(A, P, N) |
1909 | # define check_malloced_chunk(A, P, N) |
1910 | # define check_malloc_state(A) |
1911 | |
1912 | #else |
1913 | |
1914 | # define check_chunk(A, P) do_check_chunk (A, P) |
1915 | # define check_free_chunk(A, P) do_check_free_chunk (A, P) |
1916 | # define check_inuse_chunk(A, P) do_check_inuse_chunk (A, P) |
1917 | # define check_remalloced_chunk(A, P, N) do_check_remalloced_chunk (A, P, N) |
1918 | # define check_malloced_chunk(A, P, N) do_check_malloced_chunk (A, P, N) |
1919 | # define check_malloc_state(A) do_check_malloc_state (A) |
1920 | |
1921 | /* |
1922 | Properties of all chunks |
1923 | */ |
1924 | |
1925 | static void |
1926 | do_check_chunk (mstate av, mchunkptr p) |
1927 | { |
1928 | unsigned long sz = chunksize (p); |
1929 | /* min and max possible addresses assuming contiguous allocation */ |
1930 | char *max_address = (char *) (av->top) + chunksize (av->top); |
1931 | char *min_address = max_address - av->system_mem; |
1932 | |
1933 | if (!chunk_is_mmapped (p)) |
1934 | { |
1935 | /* Has legal address ... */ |
1936 | if (p != av->top) |
1937 | { |
1938 | if (contiguous (av)) |
1939 | { |
1940 | assert (((char *) p) >= min_address); |
1941 | assert (((char *) p + sz) <= ((char *) (av->top))); |
1942 | } |
1943 | } |
1944 | else |
1945 | { |
1946 | /* top size is always at least MINSIZE */ |
1947 | assert ((unsigned long) (sz) >= MINSIZE); |
1948 | /* top predecessor always marked inuse */ |
1949 | assert (prev_inuse (p)); |
1950 | } |
1951 | } |
1952 | else if (!DUMPED_MAIN_ARENA_CHUNK (p)) |
1953 | { |
1954 | /* address is outside main heap */ |
1955 | if (contiguous (av) && av->top != initial_top (av)) |
1956 | { |
1957 | assert (((char *) p) < min_address || ((char *) p) >= max_address); |
1958 | } |
1959 | /* chunk is page-aligned */ |
1960 | assert (((prev_size (p) + sz) & (GLRO (dl_pagesize) - 1)) == 0); |
1961 | /* mem is aligned */ |
1962 | assert (aligned_OK (chunk2mem (p))); |
1963 | } |
1964 | } |
1965 | |
1966 | /* |
1967 | Properties of free chunks |
1968 | */ |
1969 | |
1970 | static void |
1971 | do_check_free_chunk (mstate av, mchunkptr p) |
1972 | { |
1973 | INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA); |
1974 | mchunkptr next = chunk_at_offset (p, sz); |
1975 | |
1976 | do_check_chunk (av, p); |
1977 | |
1978 | /* Chunk must claim to be free ... */ |
1979 | assert (!inuse (p)); |
1980 | assert (!chunk_is_mmapped (p)); |
1981 | |
1982 | /* Unless a special marker, must have OK fields */ |
1983 | if ((unsigned long) (sz) >= MINSIZE) |
1984 | { |
1985 | assert ((sz & MALLOC_ALIGN_MASK) == 0); |
1986 | assert (aligned_OK (chunk2mem (p))); |
1987 | /* ... matching footer field */ |
1988 | assert (prev_size (next_chunk (p)) == sz); |
1989 | /* ... and is fully consolidated */ |
1990 | assert (prev_inuse (p)); |
1991 | assert (next == av->top || inuse (next)); |
1992 | |
1993 | /* ... and has minimally sane links */ |
1994 | assert (p->fd->bk == p); |
1995 | assert (p->bk->fd == p); |
1996 | } |
1997 | else /* markers are always of size SIZE_SZ */ |
1998 | assert (sz == SIZE_SZ); |
1999 | } |
2000 | |
2001 | /* |
2002 | Properties of inuse chunks |
2003 | */ |
2004 | |
2005 | static void |
2006 | do_check_inuse_chunk (mstate av, mchunkptr p) |
2007 | { |
2008 | mchunkptr next; |
2009 | |
2010 | do_check_chunk (av, p); |
2011 | |
2012 | if (chunk_is_mmapped (p)) |
2013 | return; /* mmapped chunks have no next/prev */ |
2014 | |
2015 | /* Check whether it claims to be in use ... */ |
2016 | assert (inuse (p)); |
2017 | |
2018 | next = next_chunk (p); |
2019 | |
2020 | /* ... and is surrounded by OK chunks. |
2021 | Since more things can be checked with free chunks than inuse ones, |
2022 | if an inuse chunk borders them and debug is on, it's worth doing them. |
2023 | */ |
2024 | if (!prev_inuse (p)) |
2025 | { |
2026 | /* Note that we cannot even look at prev unless it is not inuse */ |
2027 | mchunkptr prv = prev_chunk (p); |
2028 | assert (next_chunk (prv) == p); |
2029 | do_check_free_chunk (av, prv); |
2030 | } |
2031 | |
2032 | if (next == av->top) |
2033 | { |
2034 | assert (prev_inuse (next)); |
2035 | assert (chunksize (next) >= MINSIZE); |
2036 | } |
2037 | else if (!inuse (next)) |
2038 | do_check_free_chunk (av, next); |
2039 | } |
2040 | |
2041 | /* |
2042 | Properties of chunks recycled from fastbins |
2043 | */ |
2044 | |
2045 | static void |
2046 | do_check_remalloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s) |
2047 | { |
2048 | INTERNAL_SIZE_T sz = chunksize_nomask (p) & ~(PREV_INUSE | NON_MAIN_ARENA); |
2049 | |
2050 | if (!chunk_is_mmapped (p)) |
2051 | { |
2052 | assert (av == arena_for_chunk (p)); |
2053 | if (chunk_main_arena (p)) |
2054 | assert (av == &main_arena); |
2055 | else |
2056 | assert (av != &main_arena); |
2057 | } |
2058 | |
2059 | do_check_inuse_chunk (av, p); |
2060 | |
2061 | /* Legal size ... */ |
2062 | assert ((sz & MALLOC_ALIGN_MASK) == 0); |
2063 | assert ((unsigned long) (sz) >= MINSIZE); |
2064 | /* ... and alignment */ |
2065 | assert (aligned_OK (chunk2mem (p))); |
2066 | /* chunk is less than MINSIZE more than request */ |
2067 | assert ((long) (sz) - (long) (s) >= 0); |
2068 | assert ((long) (sz) - (long) (s + MINSIZE) < 0); |
2069 | } |
2070 | |
2071 | /* |
2072 | Properties of nonrecycled chunks at the point they are malloced |
2073 | */ |
2074 | |
2075 | static void |
2076 | do_check_malloced_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T s) |
2077 | { |
2078 | /* same as recycled case ... */ |
2079 | do_check_remalloced_chunk (av, p, s); |
2080 | |
2081 | /* |
2082 | ... plus, must obey implementation invariant that prev_inuse is |
2083 | always true of any allocated chunk; i.e., that each allocated |
2084 | chunk borders either a previously allocated and still in-use |
2085 | chunk, or the base of its memory arena. This is ensured |
2086 | by making all allocations from the `lowest' part of any found |
2087 | chunk. This does not necessarily hold however for chunks |
2088 | recycled via fastbins. |
2089 | */ |
2090 | |
2091 | assert (prev_inuse (p)); |
2092 | } |
2093 | |
2094 | |
2095 | /* |
2096 | Properties of malloc_state. |
2097 | |
2098 | This may be useful for debugging malloc, as well as detecting user |
2099 | programmer errors that somehow write into malloc_state. |
2100 | |
2101 | If you are extending or experimenting with this malloc, you can |
2102 | probably figure out how to hack this routine to print out or |
2103 | display chunk addresses, sizes, bins, and other instrumentation. |
2104 | */ |
2105 | |
2106 | static void |
2107 | do_check_malloc_state (mstate av) |
2108 | { |
2109 | int i; |
2110 | mchunkptr p; |
2111 | mchunkptr q; |
2112 | mbinptr b; |
2113 | unsigned int idx; |
2114 | INTERNAL_SIZE_T size; |
2115 | unsigned long total = 0; |
2116 | int max_fast_bin; |
2117 | |
2118 | /* internal size_t must be no wider than pointer type */ |
2119 | assert (sizeof (INTERNAL_SIZE_T) <= sizeof (char *)); |
2120 | |
2121 | /* alignment is a power of 2 */ |
2122 | assert ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT - 1)) == 0); |
2123 | |
2124 | /* Check the arena is initialized. */ |
2125 | assert (av->top != 0); |
2126 | |
2127 | /* No memory has been allocated yet, so doing more tests is not possible. */ |
2128 | if (av->top == initial_top (av)) |
2129 | return; |
2130 | |
2131 | /* pagesize is a power of 2 */ |
2132 | assert (powerof2(GLRO (dl_pagesize))); |
2133 | |
2134 | /* A contiguous main_arena is consistent with sbrk_base. */ |
2135 | if (av == &main_arena && contiguous (av)) |
2136 | assert ((char *) mp_.sbrk_base + av->system_mem == |
2137 | (char *) av->top + chunksize (av->top)); |
2138 | |
2139 | /* properties of fastbins */ |
2140 | |
2141 | /* max_fast is in allowed range */ |
2142 | assert ((get_max_fast () & ~1) <= request2size (MAX_FAST_SIZE)); |
2143 | |
2144 | max_fast_bin = fastbin_index (get_max_fast ()); |
2145 | |
2146 | for (i = 0; i < NFASTBINS; ++i) |
2147 | { |
2148 | p = fastbin (av, i); |
2149 | |
2150 | /* The following test can only be performed for the main arena. |
2151 | While mallopt calls malloc_consolidate to get rid of all fast |
2152 | bins (especially those larger than the new maximum) this does |
2153 | only happen for the main arena. Trying to do this for any |
2154 | other arena would mean those arenas have to be locked and |
2155 | malloc_consolidate be called for them. This is excessive. And |
2156 | even if this is acceptable to somebody it still cannot solve |
2157 | the problem completely since if the arena is locked a |
2158 | concurrent malloc call might create a new arena which then |
2159 | could use the newly invalid fast bins. */ |
2160 | |
2161 | /* all bins past max_fast are empty */ |
2162 | if (av == &main_arena && i > max_fast_bin) |
2163 | assert (p == 0); |
2164 | |
2165 | while (p != 0) |
2166 | { |
2167 | /* each chunk claims to be inuse */ |
2168 | do_check_inuse_chunk (av, p); |
2169 | total += chunksize (p); |
2170 | /* chunk belongs in this bin */ |
2171 | assert (fastbin_index (chunksize (p)) == i); |
2172 | p = p->fd; |
2173 | } |
2174 | } |
2175 | |
2176 | /* check normal bins */ |
2177 | for (i = 1; i < NBINS; ++i) |
2178 | { |
2179 | b = bin_at (av, i); |
2180 | |
2181 | /* binmap is accurate (except for bin 1 == unsorted_chunks) */ |
2182 | if (i >= 2) |
2183 | { |
2184 | unsigned int binbit = get_binmap (av, i); |
2185 | int empty = last (b) == b; |
2186 | if (!binbit) |
2187 | assert (empty); |
2188 | else if (!empty) |
2189 | assert (binbit); |
2190 | } |
2191 | |
2192 | for (p = last (b); p != b; p = p->bk) |
2193 | { |
2194 | /* each chunk claims to be free */ |
2195 | do_check_free_chunk (av, p); |
2196 | size = chunksize (p); |
2197 | total += size; |
2198 | if (i >= 2) |
2199 | { |
2200 | /* chunk belongs in bin */ |
2201 | idx = bin_index (size); |
2202 | assert (idx == i); |
2203 | /* lists are sorted */ |
2204 | assert (p->bk == b || |
2205 | (unsigned long) chunksize (p->bk) >= (unsigned long) chunksize (p)); |
2206 | |
2207 | if (!in_smallbin_range (size)) |
2208 | { |
2209 | if (p->fd_nextsize != NULL) |
2210 | { |
2211 | if (p->fd_nextsize == p) |
2212 | assert (p->bk_nextsize == p); |
2213 | else |
2214 | { |
2215 | if (p->fd_nextsize == first (b)) |
2216 | assert (chunksize (p) < chunksize (p->fd_nextsize)); |
2217 | else |
2218 | assert (chunksize (p) > chunksize (p->fd_nextsize)); |
2219 | |
2220 | if (p == first (b)) |
2221 | assert (chunksize (p) > chunksize (p->bk_nextsize)); |
2222 | else |
2223 | assert (chunksize (p) < chunksize (p->bk_nextsize)); |
2224 | } |
2225 | } |
2226 | else |
2227 | assert (p->bk_nextsize == NULL); |
2228 | } |
2229 | } |
2230 | else if (!in_smallbin_range (size)) |
2231 | assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL); |
2232 | /* chunk is followed by a legal chain of inuse chunks */ |
2233 | for (q = next_chunk (p); |
2234 | (q != av->top && inuse (q) && |
2235 | (unsigned long) (chunksize (q)) >= MINSIZE); |
2236 | q = next_chunk (q)) |
2237 | do_check_inuse_chunk (av, q); |
2238 | } |
2239 | } |
2240 | |
2241 | /* top chunk is OK */ |
2242 | check_chunk (av, av->top); |
2243 | } |
2244 | #endif |
2245 | |
2246 | |
2247 | /* ----------------- Support for debugging hooks -------------------- */ |
2248 | #include "hooks.c" |
2249 | |
2250 | |
2251 | /* ----------- Routines dealing with system allocation -------------- */ |
2252 | |
2253 | /* |
2254 | sysmalloc handles malloc cases requiring more memory from the system. |
2255 | On entry, it is assumed that av->top does not have enough |
2256 | space to service request for nb bytes, thus requiring that av->top |
2257 | be extended or replaced. |
2258 | */ |
2259 | |
2260 | static void * |
2261 | sysmalloc (INTERNAL_SIZE_T nb, mstate av) |
2262 | { |
2263 | mchunkptr old_top; /* incoming value of av->top */ |
2264 | INTERNAL_SIZE_T old_size; /* its size */ |
2265 | char *old_end; /* its end address */ |
2266 | |
2267 | long size; /* arg to first MORECORE or mmap call */ |
2268 | char *brk; /* return value from MORECORE */ |
2269 | |
2270 | long correction; /* arg to 2nd MORECORE call */ |
2271 | char *snd_brk; /* 2nd return val */ |
2272 | |
2273 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */ |
2274 | INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */ |
2275 | char *aligned_brk; /* aligned offset into brk */ |
2276 | |
2277 | mchunkptr p; /* the allocated/returned chunk */ |
2278 | mchunkptr remainder; /* remainder from allocation */ |
2279 | unsigned long remainder_size; /* its size */ |
2280 | |
2281 | |
2282 | size_t pagesize = GLRO (dl_pagesize); |
2283 | bool tried_mmap = false; |
2284 | |
2285 | |
2286 | /* |
2287 | If have mmap, and the request size meets the mmap threshold, and |
2288 | the system supports mmap, and there are few enough currently |
2289 | allocated mmapped regions, try to directly map this request |
2290 | rather than expanding top. |
2291 | */ |
2292 | |
2293 | if (av == NULL |
2294 | || ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold) |
2295 | && (mp_.n_mmaps < mp_.n_mmaps_max))) |
2296 | { |
2297 | char *mm; /* return value from mmap call*/ |
2298 | |
2299 | try_mmap: |
2300 | /* |
2301 | Round up size to nearest page. For mmapped chunks, the overhead |
2302 | is one SIZE_SZ unit larger than for normal chunks, because there |
2303 | is no following chunk whose prev_size field could be used. |
2304 | |
2305 | See the front_misalign handling below, for glibc there is no |
2306 | need for further alignments unless we have have high alignment. |
2307 | */ |
2308 | if (MALLOC_ALIGNMENT == 2 * SIZE_SZ) |
2309 | size = ALIGN_UP (nb + SIZE_SZ, pagesize); |
2310 | else |
2311 | size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize); |
2312 | tried_mmap = true; |
2313 | |
2314 | /* Don't try if size wraps around 0 */ |
2315 | if ((unsigned long) (size) > (unsigned long) (nb)) |
2316 | { |
2317 | mm = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0)); |
2318 | |
2319 | if (mm != MAP_FAILED) |
2320 | { |
2321 | /* |
2322 | The offset to the start of the mmapped region is stored |
2323 | in the prev_size field of the chunk. This allows us to adjust |
2324 | returned start address to meet alignment requirements here |
2325 | and in memalign(), and still be able to compute proper |
2326 | address argument for later munmap in free() and realloc(). |
2327 | */ |
2328 | |
2329 | if (MALLOC_ALIGNMENT == 2 * SIZE_SZ) |
2330 | { |
2331 | /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and |
2332 | MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page |
2333 | aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */ |
2334 | assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0); |
2335 | front_misalign = 0; |
2336 | } |
2337 | else |
2338 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK; |
2339 | if (front_misalign > 0) |
2340 | { |
2341 | correction = MALLOC_ALIGNMENT - front_misalign; |
2342 | p = (mchunkptr) (mm + correction); |
2343 | set_prev_size (p, correction); |
2344 | set_head (p, (size - correction) | IS_MMAPPED); |
2345 | } |
2346 | else |
2347 | { |
2348 | p = (mchunkptr) mm; |
2349 | set_prev_size (p, 0); |
2350 | set_head (p, size | IS_MMAPPED); |
2351 | } |
2352 | |
2353 | /* update statistics */ |
2354 | |
2355 | int new = atomic_exchange_and_add (&mp_.n_mmaps, 1) + 1; |
2356 | atomic_max (&mp_.max_n_mmaps, new); |
2357 | |
2358 | unsigned long sum; |
2359 | sum = atomic_exchange_and_add (&mp_.mmapped_mem, size) + size; |
2360 | atomic_max (&mp_.max_mmapped_mem, sum); |
2361 | |
2362 | check_chunk (av, p); |
2363 | |
2364 | return chunk2mem (p); |
2365 | } |
2366 | } |
2367 | } |
2368 | |
2369 | /* There are no usable arenas and mmap also failed. */ |
2370 | if (av == NULL) |
2371 | return 0; |
2372 | |
2373 | /* Record incoming configuration of top */ |
2374 | |
2375 | old_top = av->top; |
2376 | old_size = chunksize (old_top); |
2377 | old_end = (char *) (chunk_at_offset (old_top, old_size)); |
2378 | |
2379 | brk = snd_brk = (char *) (MORECORE_FAILURE); |
2380 | |
2381 | /* |
2382 | If not the first time through, we require old_size to be |
2383 | at least MINSIZE and to have prev_inuse set. |
2384 | */ |
2385 | |
2386 | assert ((old_top == initial_top (av) && old_size == 0) || |
2387 | ((unsigned long) (old_size) >= MINSIZE && |
2388 | prev_inuse (old_top) && |
2389 | ((unsigned long) old_end & (pagesize - 1)) == 0)); |
2390 | |
2391 | /* Precondition: not enough current space to satisfy nb request */ |
2392 | assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE)); |
2393 | |
2394 | |
2395 | if (av != &main_arena) |
2396 | { |
2397 | heap_info *old_heap, *heap; |
2398 | size_t old_heap_size; |
2399 | |
2400 | /* First try to extend the current heap. */ |
2401 | old_heap = heap_for_ptr (old_top); |
2402 | old_heap_size = old_heap->size; |
2403 | if ((long) (MINSIZE + nb - old_size) > 0 |
2404 | && grow_heap (old_heap, MINSIZE + nb - old_size) == 0) |
2405 | { |
2406 | av->system_mem += old_heap->size - old_heap_size; |
2407 | set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top) |
2408 | | PREV_INUSE); |
2409 | } |
2410 | else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad))) |
2411 | { |
2412 | /* Use a newly allocated heap. */ |
2413 | heap->ar_ptr = av; |
2414 | heap->prev = old_heap; |
2415 | av->system_mem += heap->size; |
2416 | /* Set up the new top. */ |
2417 | top (av) = chunk_at_offset (heap, sizeof (*heap)); |
2418 | set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE); |
2419 | |
2420 | /* Setup fencepost and free the old top chunk with a multiple of |
2421 | MALLOC_ALIGNMENT in size. */ |
2422 | /* The fencepost takes at least MINSIZE bytes, because it might |
2423 | become the top chunk again later. Note that a footer is set |
2424 | up, too, although the chunk is marked in use. */ |
2425 | old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK; |
2426 | set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), 0 | PREV_INUSE); |
2427 | if (old_size >= MINSIZE) |
2428 | { |
2429 | set_head (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ) | PREV_INUSE); |
2430 | set_foot (chunk_at_offset (old_top, old_size), (2 * SIZE_SZ)); |
2431 | set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA); |
2432 | _int_free (av, old_top, 1); |
2433 | } |
2434 | else |
2435 | { |
2436 | set_head (old_top, (old_size + 2 * SIZE_SZ) | PREV_INUSE); |
2437 | set_foot (old_top, (old_size + 2 * SIZE_SZ)); |
2438 | } |
2439 | } |
2440 | else if (!tried_mmap) |
2441 | /* We can at least try to use to mmap memory. */ |
2442 | goto try_mmap; |
2443 | } |
2444 | else /* av == main_arena */ |
2445 | |
2446 | |
2447 | { /* Request enough space for nb + pad + overhead */ |
2448 | size = nb + mp_.top_pad + MINSIZE; |
2449 | |
2450 | /* |
2451 | If contiguous, we can subtract out existing space that we hope to |
2452 | combine with new space. We add it back later only if |
2453 | we don't actually get contiguous space. |
2454 | */ |
2455 | |
2456 | if (contiguous (av)) |
2457 | size -= old_size; |
2458 | |
2459 | /* |
2460 | Round to a multiple of page size. |
2461 | If MORECORE is not contiguous, this ensures that we only call it |
2462 | with whole-page arguments. And if MORECORE is contiguous and |
2463 | this is not first time through, this preserves page-alignment of |
2464 | previous calls. Otherwise, we correct to page-align below. |
2465 | */ |
2466 | |
2467 | size = ALIGN_UP (size, pagesize); |
2468 | |
2469 | /* |
2470 | Don't try to call MORECORE if argument is so big as to appear |
2471 | negative. Note that since mmap takes size_t arg, it may succeed |
2472 | below even if we cannot call MORECORE. |
2473 | */ |
2474 | |
2475 | if (size > 0) |
2476 | { |
2477 | brk = (char *) (MORECORE (size)); |
2478 | LIBC_PROBE (memory_sbrk_more, 2, brk, size); |
2479 | } |
2480 | |
2481 | if (brk != (char *) (MORECORE_FAILURE)) |
2482 | { |
2483 | /* Call the `morecore' hook if necessary. */ |
2484 | void (*hook) (void) = atomic_forced_read (__after_morecore_hook); |
2485 | if (__builtin_expect (hook != NULL, 0)) |
2486 | (*hook)(); |
2487 | } |
2488 | else |
2489 | { |
2490 | /* |
2491 | If have mmap, try using it as a backup when MORECORE fails or |
2492 | cannot be used. This is worth doing on systems that have "holes" in |
2493 | address space, so sbrk cannot extend to give contiguous space, but |
2494 | space is available elsewhere. Note that we ignore mmap max count |
2495 | and threshold limits, since the space will not be used as a |
2496 | segregated mmap region. |
2497 | */ |
2498 | |
2499 | /* Cannot merge with old top, so add its size back in */ |
2500 | if (contiguous (av)) |
2501 | size = ALIGN_UP (size + old_size, pagesize); |
2502 | |
2503 | /* If we are relying on mmap as backup, then use larger units */ |
2504 | if ((unsigned long) (size) < (unsigned long) (MMAP_AS_MORECORE_SIZE)) |
2505 | size = MMAP_AS_MORECORE_SIZE; |
2506 | |
2507 | /* Don't try if size wraps around 0 */ |
2508 | if ((unsigned long) (size) > (unsigned long) (nb)) |
2509 | { |
2510 | char *mbrk = (char *) (MMAP (0, size, PROT_READ | PROT_WRITE, 0)); |
2511 | |
2512 | if (mbrk != MAP_FAILED) |
2513 | { |
2514 | /* We do not need, and cannot use, another sbrk call to find end */ |
2515 | brk = mbrk; |
2516 | snd_brk = brk + size; |
2517 | |
2518 | /* |
2519 | Record that we no longer have a contiguous sbrk region. |
2520 | After the first time mmap is used as backup, we do not |
2521 | ever rely on contiguous space since this could incorrectly |
2522 | bridge regions. |
2523 | */ |
2524 | set_noncontiguous (av); |
2525 | } |
2526 | } |
2527 | } |
2528 | |
2529 | if (brk != (char *) (MORECORE_FAILURE)) |
2530 | { |
2531 | if (mp_.sbrk_base == 0) |
2532 | mp_.sbrk_base = brk; |
2533 | av->system_mem += size; |
2534 | |
2535 | /* |
2536 | If MORECORE extends previous space, we can likewise extend top size. |
2537 | */ |
2538 | |
2539 | if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE)) |
2540 | set_head (old_top, (size + old_size) | PREV_INUSE); |
2541 | |
2542 | else if (contiguous (av) && old_size && brk < old_end) |
2543 | /* Oops! Someone else killed our space.. Can't touch anything. */ |
2544 | malloc_printerr ("break adjusted to free malloc space" ); |
2545 | |
2546 | /* |
2547 | Otherwise, make adjustments: |
2548 | |
2549 | * If the first time through or noncontiguous, we need to call sbrk |
2550 | just to find out where the end of memory lies. |
2551 | |
2552 | * We need to ensure that all returned chunks from malloc will meet |
2553 | MALLOC_ALIGNMENT |
2554 | |
2555 | * If there was an intervening foreign sbrk, we need to adjust sbrk |
2556 | request size to account for fact that we will not be able to |
2557 | combine new space with existing space in old_top. |
2558 | |
2559 | * Almost all systems internally allocate whole pages at a time, in |
2560 | which case we might as well use the whole last page of request. |
2561 | So we allocate enough more memory to hit a page boundary now, |
2562 | which in turn causes future contiguous calls to page-align. |
2563 | */ |
2564 | |
2565 | else |
2566 | { |
2567 | front_misalign = 0; |
2568 | end_misalign = 0; |
2569 | correction = 0; |
2570 | aligned_brk = brk; |
2571 | |
2572 | /* handle contiguous cases */ |
2573 | if (contiguous (av)) |
2574 | { |
2575 | /* Count foreign sbrk as system_mem. */ |
2576 | if (old_size) |
2577 | av->system_mem += brk - old_end; |
2578 | |
2579 | /* Guarantee alignment of first new chunk made from this space */ |
2580 | |
2581 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK; |
2582 | if (front_misalign > 0) |
2583 | { |
2584 | /* |
2585 | Skip over some bytes to arrive at an aligned position. |
2586 | We don't need to specially mark these wasted front bytes. |
2587 | They will never be accessed anyway because |
2588 | prev_inuse of av->top (and any chunk created from its start) |
2589 | is always true after initialization. |
2590 | */ |
2591 | |
2592 | correction = MALLOC_ALIGNMENT - front_misalign; |
2593 | aligned_brk += correction; |
2594 | } |
2595 | |
2596 | /* |
2597 | If this isn't adjacent to existing space, then we will not |
2598 | be able to merge with old_top space, so must add to 2nd request. |
2599 | */ |
2600 | |
2601 | correction += old_size; |
2602 | |
2603 | /* Extend the end address to hit a page boundary */ |
2604 | end_misalign = (INTERNAL_SIZE_T) (brk + size + correction); |
2605 | correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign; |
2606 | |
2607 | assert (correction >= 0); |
2608 | snd_brk = (char *) (MORECORE (correction)); |
2609 | |
2610 | /* |
2611 | If can't allocate correction, try to at least find out current |
2612 | brk. It might be enough to proceed without failing. |
2613 | |
2614 | Note that if second sbrk did NOT fail, we assume that space |
2615 | is contiguous with first sbrk. This is a safe assumption unless |
2616 | program is multithreaded but doesn't use locks and a foreign sbrk |
2617 | occurred between our first and second calls. |
2618 | */ |
2619 | |
2620 | if (snd_brk == (char *) (MORECORE_FAILURE)) |
2621 | { |
2622 | correction = 0; |
2623 | snd_brk = (char *) (MORECORE (0)); |
2624 | } |
2625 | else |
2626 | { |
2627 | /* Call the `morecore' hook if necessary. */ |
2628 | void (*hook) (void) = atomic_forced_read (__after_morecore_hook); |
2629 | if (__builtin_expect (hook != NULL, 0)) |
2630 | (*hook)(); |
2631 | } |
2632 | } |
2633 | |
2634 | /* handle non-contiguous cases */ |
2635 | else |
2636 | { |
2637 | if (MALLOC_ALIGNMENT == 2 * SIZE_SZ) |
2638 | /* MORECORE/mmap must correctly align */ |
2639 | assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0); |
2640 | else |
2641 | { |
2642 | front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK; |
2643 | if (front_misalign > 0) |
2644 | { |
2645 | /* |
2646 | Skip over some bytes to arrive at an aligned position. |
2647 | We don't need to specially mark these wasted front bytes. |
2648 | They will never be accessed anyway because |
2649 | prev_inuse of av->top (and any chunk created from its start) |
2650 | is always true after initialization. |
2651 | */ |
2652 | |
2653 | aligned_brk += MALLOC_ALIGNMENT - front_misalign; |
2654 | } |
2655 | } |
2656 | |
2657 | /* Find out current end of memory */ |
2658 | if (snd_brk == (char *) (MORECORE_FAILURE)) |
2659 | { |
2660 | snd_brk = (char *) (MORECORE (0)); |
2661 | } |
2662 | } |
2663 | |
2664 | /* Adjust top based on results of second sbrk */ |
2665 | if (snd_brk != (char *) (MORECORE_FAILURE)) |
2666 | { |
2667 | av->top = (mchunkptr) aligned_brk; |
2668 | set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE); |
2669 | av->system_mem += correction; |
2670 | |
2671 | /* |
2672 | If not the first time through, we either have a |
2673 | gap due to foreign sbrk or a non-contiguous region. Insert a |
2674 | double fencepost at old_top to prevent consolidation with space |
2675 | we don't own. These fenceposts are artificial chunks that are |
2676 | marked as inuse and are in any case too small to use. We need |
2677 | two to make sizes and alignments work out. |
2678 | */ |
2679 | |
2680 | if (old_size != 0) |
2681 | { |
2682 | /* |
2683 | Shrink old_top to insert fenceposts, keeping size a |
2684 | multiple of MALLOC_ALIGNMENT. We know there is at least |
2685 | enough space in old_top to do this. |
2686 | */ |
2687 | old_size = (old_size - 4 * SIZE_SZ) & ~MALLOC_ALIGN_MASK; |
2688 | set_head (old_top, old_size | PREV_INUSE); |
2689 | |
2690 | /* |
2691 | Note that the following assignments completely overwrite |
2692 | old_top when old_size was previously MINSIZE. This is |
2693 | intentional. We need the fencepost, even if old_top otherwise gets |
2694 | lost. |
2695 | */ |
2696 | set_head (chunk_at_offset (old_top, old_size), |
2697 | (2 * SIZE_SZ) | PREV_INUSE); |
2698 | set_head (chunk_at_offset (old_top, old_size + 2 * SIZE_SZ), |
2699 | (2 * SIZE_SZ) | PREV_INUSE); |
2700 | |
2701 | /* If possible, release the rest. */ |
2702 | if (old_size >= MINSIZE) |
2703 | { |
2704 | _int_free (av, old_top, 1); |
2705 | } |
2706 | } |
2707 | } |
2708 | } |
2709 | } |
2710 | } /* if (av != &main_arena) */ |
2711 | |
2712 | if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem)) |
2713 | av->max_system_mem = av->system_mem; |
2714 | check_malloc_state (av); |
2715 | |
2716 | /* finally, do the allocation */ |
2717 | p = av->top; |
2718 | size = chunksize (p); |
2719 | |
2720 | /* check that one of the above allocation paths succeeded */ |
2721 | if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) |
2722 | { |
2723 | remainder_size = size - nb; |
2724 | remainder = chunk_at_offset (p, nb); |
2725 | av->top = remainder; |
2726 | set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
2727 | set_head (remainder, remainder_size | PREV_INUSE); |
2728 | check_malloced_chunk (av, p, nb); |
2729 | return chunk2mem (p); |
2730 | } |
2731 | |
2732 | /* catch all failure paths */ |
2733 | __set_errno (ENOMEM); |
2734 | return 0; |
2735 | } |
2736 | |
2737 | |
2738 | /* |
2739 | systrim is an inverse of sorts to sysmalloc. It gives memory back |
2740 | to the system (via negative arguments to sbrk) if there is unused |
2741 | memory at the `high' end of the malloc pool. It is called |
2742 | automatically by free() when top space exceeds the trim |
2743 | threshold. It is also called by the public malloc_trim routine. It |
2744 | returns 1 if it actually released any memory, else 0. |
2745 | */ |
2746 | |
2747 | static int |
2748 | systrim (size_t pad, mstate av) |
2749 | { |
2750 | long top_size; /* Amount of top-most memory */ |
2751 | long ; /* Amount to release */ |
2752 | long released; /* Amount actually released */ |
2753 | char *current_brk; /* address returned by pre-check sbrk call */ |
2754 | char *new_brk; /* address returned by post-check sbrk call */ |
2755 | size_t pagesize; |
2756 | long top_area; |
2757 | |
2758 | pagesize = GLRO (dl_pagesize); |
2759 | top_size = chunksize (av->top); |
2760 | |
2761 | top_area = top_size - MINSIZE - 1; |
2762 | if (top_area <= pad) |
2763 | return 0; |
2764 | |
2765 | /* Release in pagesize units and round down to the nearest page. */ |
2766 | extra = ALIGN_DOWN(top_area - pad, pagesize); |
2767 | |
2768 | if (extra == 0) |
2769 | return 0; |
2770 | |
2771 | /* |
2772 | Only proceed if end of memory is where we last set it. |
2773 | This avoids problems if there were foreign sbrk calls. |
2774 | */ |
2775 | current_brk = (char *) (MORECORE (0)); |
2776 | if (current_brk == (char *) (av->top) + top_size) |
2777 | { |
2778 | /* |
2779 | Attempt to release memory. We ignore MORECORE return value, |
2780 | and instead call again to find out where new end of memory is. |
2781 | This avoids problems if first call releases less than we asked, |
2782 | of if failure somehow altered brk value. (We could still |
2783 | encounter problems if it altered brk in some very bad way, |
2784 | but the only thing we can do is adjust anyway, which will cause |
2785 | some downstream failure.) |
2786 | */ |
2787 | |
2788 | MORECORE (-extra); |
2789 | /* Call the `morecore' hook if necessary. */ |
2790 | void (*hook) (void) = atomic_forced_read (__after_morecore_hook); |
2791 | if (__builtin_expect (hook != NULL, 0)) |
2792 | (*hook)(); |
2793 | new_brk = (char *) (MORECORE (0)); |
2794 | |
2795 | LIBC_PROBE (memory_sbrk_less, 2, new_brk, extra); |
2796 | |
2797 | if (new_brk != (char *) MORECORE_FAILURE) |
2798 | { |
2799 | released = (long) (current_brk - new_brk); |
2800 | |
2801 | if (released != 0) |
2802 | { |
2803 | /* Success. Adjust top. */ |
2804 | av->system_mem -= released; |
2805 | set_head (av->top, (top_size - released) | PREV_INUSE); |
2806 | check_malloc_state (av); |
2807 | return 1; |
2808 | } |
2809 | } |
2810 | } |
2811 | return 0; |
2812 | } |
2813 | |
2814 | static void |
2815 | munmap_chunk (mchunkptr p) |
2816 | { |
2817 | size_t pagesize = GLRO (dl_pagesize); |
2818 | INTERNAL_SIZE_T size = chunksize (p); |
2819 | |
2820 | assert (chunk_is_mmapped (p)); |
2821 | |
2822 | /* Do nothing if the chunk is a faked mmapped chunk in the dumped |
2823 | main arena. We never free this memory. */ |
2824 | if (DUMPED_MAIN_ARENA_CHUNK (p)) |
2825 | return; |
2826 | |
2827 | uintptr_t mem = (uintptr_t) chunk2mem (p); |
2828 | uintptr_t block = (uintptr_t) p - prev_size (p); |
2829 | size_t total_size = prev_size (p) + size; |
2830 | /* Unfortunately we have to do the compilers job by hand here. Normally |
2831 | we would test BLOCK and TOTAL-SIZE separately for compliance with the |
2832 | page size. But gcc does not recognize the optimization possibility |
2833 | (in the moment at least) so we combine the two values into one before |
2834 | the bit test. */ |
2835 | if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0 |
2836 | || __glibc_unlikely (!powerof2 (mem & (pagesize - 1)))) |
2837 | malloc_printerr ("munmap_chunk(): invalid pointer" ); |
2838 | |
2839 | atomic_decrement (&mp_.n_mmaps); |
2840 | atomic_add (&mp_.mmapped_mem, -total_size); |
2841 | |
2842 | /* If munmap failed the process virtual memory address space is in a |
2843 | bad shape. Just leave the block hanging around, the process will |
2844 | terminate shortly anyway since not much can be done. */ |
2845 | __munmap ((char *) block, total_size); |
2846 | } |
2847 | |
2848 | #if HAVE_MREMAP |
2849 | |
2850 | static mchunkptr |
2851 | mremap_chunk (mchunkptr p, size_t new_size) |
2852 | { |
2853 | size_t pagesize = GLRO (dl_pagesize); |
2854 | INTERNAL_SIZE_T offset = prev_size (p); |
2855 | INTERNAL_SIZE_T size = chunksize (p); |
2856 | char *cp; |
2857 | |
2858 | assert (chunk_is_mmapped (p)); |
2859 | |
2860 | uintptr_t block = (uintptr_t) p - offset; |
2861 | uintptr_t mem = (uintptr_t) chunk2mem(p); |
2862 | size_t total_size = offset + size; |
2863 | if (__glibc_unlikely ((block | total_size) & (pagesize - 1)) != 0 |
2864 | || __glibc_unlikely (!powerof2 (mem & (pagesize - 1)))) |
2865 | malloc_printerr("mremap_chunk(): invalid pointer" ); |
2866 | |
2867 | /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ |
2868 | new_size = ALIGN_UP (new_size + offset + SIZE_SZ, pagesize); |
2869 | |
2870 | /* No need to remap if the number of pages does not change. */ |
2871 | if (total_size == new_size) |
2872 | return p; |
2873 | |
2874 | cp = (char *) __mremap ((char *) block, total_size, new_size, |
2875 | MREMAP_MAYMOVE); |
2876 | |
2877 | if (cp == MAP_FAILED) |
2878 | return 0; |
2879 | |
2880 | p = (mchunkptr) (cp + offset); |
2881 | |
2882 | assert (aligned_OK (chunk2mem (p))); |
2883 | |
2884 | assert (prev_size (p) == offset); |
2885 | set_head (p, (new_size - offset) | IS_MMAPPED); |
2886 | |
2887 | INTERNAL_SIZE_T new; |
2888 | new = atomic_exchange_and_add (&mp_.mmapped_mem, new_size - size - offset) |
2889 | + new_size - size - offset; |
2890 | atomic_max (&mp_.max_mmapped_mem, new); |
2891 | return p; |
2892 | } |
2893 | #endif /* HAVE_MREMAP */ |
2894 | |
2895 | /*------------------------ Public wrappers. --------------------------------*/ |
2896 | |
2897 | #if USE_TCACHE |
2898 | |
2899 | /* We overlay this structure on the user-data portion of a chunk when |
2900 | the chunk is stored in the per-thread cache. */ |
2901 | typedef struct tcache_entry |
2902 | { |
2903 | struct tcache_entry *next; |
2904 | /* This field exists to detect double frees. */ |
2905 | struct tcache_perthread_struct *key; |
2906 | } tcache_entry; |
2907 | |
2908 | /* There is one of these for each thread, which contains the |
2909 | per-thread cache (hence "tcache_perthread_struct"). Keeping |
2910 | overall size low is mildly important. Note that COUNTS and ENTRIES |
2911 | are redundant (we could have just counted the linked list each |
2912 | time), this is for performance reasons. */ |
2913 | typedef struct tcache_perthread_struct |
2914 | { |
2915 | uint16_t counts[TCACHE_MAX_BINS]; |
2916 | tcache_entry *entries[TCACHE_MAX_BINS]; |
2917 | } tcache_perthread_struct; |
2918 | |
2919 | static __thread bool tcache_shutting_down = false; |
2920 | static __thread tcache_perthread_struct *tcache = NULL; |
2921 | |
2922 | /* Caller must ensure that we know tc_idx is valid and there's room |
2923 | for more chunks. */ |
2924 | static __always_inline void |
2925 | tcache_put (mchunkptr chunk, size_t tc_idx) |
2926 | { |
2927 | tcache_entry *e = (tcache_entry *) chunk2mem (chunk); |
2928 | |
2929 | /* Mark this chunk as "in the tcache" so the test in _int_free will |
2930 | detect a double free. */ |
2931 | e->key = tcache; |
2932 | |
2933 | e->next = tcache->entries[tc_idx]; |
2934 | tcache->entries[tc_idx] = e; |
2935 | ++(tcache->counts[tc_idx]); |
2936 | } |
2937 | |
2938 | /* Caller must ensure that we know tc_idx is valid and there's |
2939 | available chunks to remove. */ |
2940 | static __always_inline void * |
2941 | tcache_get (size_t tc_idx) |
2942 | { |
2943 | tcache_entry *e = tcache->entries[tc_idx]; |
2944 | tcache->entries[tc_idx] = e->next; |
2945 | --(tcache->counts[tc_idx]); |
2946 | e->key = NULL; |
2947 | return (void *) e; |
2948 | } |
2949 | |
2950 | static void |
2951 | tcache_thread_shutdown (void) |
2952 | { |
2953 | int i; |
2954 | tcache_perthread_struct *tcache_tmp = tcache; |
2955 | |
2956 | if (!tcache) |
2957 | return; |
2958 | |
2959 | /* Disable the tcache and prevent it from being reinitialized. */ |
2960 | tcache = NULL; |
2961 | tcache_shutting_down = true; |
2962 | |
2963 | /* Free all of the entries and the tcache itself back to the arena |
2964 | heap for coalescing. */ |
2965 | for (i = 0; i < TCACHE_MAX_BINS; ++i) |
2966 | { |
2967 | while (tcache_tmp->entries[i]) |
2968 | { |
2969 | tcache_entry *e = tcache_tmp->entries[i]; |
2970 | tcache_tmp->entries[i] = e->next; |
2971 | __libc_free (e); |
2972 | } |
2973 | } |
2974 | |
2975 | __libc_free (tcache_tmp); |
2976 | } |
2977 | |
2978 | static void |
2979 | tcache_init(void) |
2980 | { |
2981 | mstate ar_ptr; |
2982 | void *victim = 0; |
2983 | const size_t bytes = sizeof (tcache_perthread_struct); |
2984 | |
2985 | if (tcache_shutting_down) |
2986 | return; |
2987 | |
2988 | arena_get (ar_ptr, bytes); |
2989 | victim = _int_malloc (ar_ptr, bytes); |
2990 | if (!victim && ar_ptr != NULL) |
2991 | { |
2992 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
2993 | victim = _int_malloc (ar_ptr, bytes); |
2994 | } |
2995 | |
2996 | |
2997 | if (ar_ptr != NULL) |
2998 | __libc_lock_unlock (ar_ptr->mutex); |
2999 | |
3000 | /* In a low memory situation, we may not be able to allocate memory |
3001 | - in which case, we just keep trying later. However, we |
3002 | typically do this very early, so either there is sufficient |
3003 | memory, or there isn't enough memory to do non-trivial |
3004 | allocations anyway. */ |
3005 | if (victim) |
3006 | { |
3007 | tcache = (tcache_perthread_struct *) victim; |
3008 | memset (tcache, 0, sizeof (tcache_perthread_struct)); |
3009 | } |
3010 | |
3011 | } |
3012 | |
3013 | # define MAYBE_INIT_TCACHE() \ |
3014 | if (__glibc_unlikely (tcache == NULL)) \ |
3015 | tcache_init(); |
3016 | |
3017 | #else /* !USE_TCACHE */ |
3018 | # define MAYBE_INIT_TCACHE() |
3019 | |
3020 | static void |
3021 | tcache_thread_shutdown (void) |
3022 | { |
3023 | /* Nothing to do if there is no thread cache. */ |
3024 | } |
3025 | |
3026 | #endif /* !USE_TCACHE */ |
3027 | |
3028 | void * |
3029 | __libc_malloc (size_t bytes) |
3030 | { |
3031 | mstate ar_ptr; |
3032 | void *victim; |
3033 | |
3034 | void *(*hook) (size_t, const void *) |
3035 | = atomic_forced_read (__malloc_hook); |
3036 | if (__builtin_expect (hook != NULL, 0)) |
3037 | return (*hook)(bytes, RETURN_ADDRESS (0)); |
3038 | #if USE_TCACHE |
3039 | /* int_free also calls request2size, be careful to not pad twice. */ |
3040 | size_t tbytes; |
3041 | checked_request2size (bytes, tbytes); |
3042 | size_t tc_idx = csize2tidx (tbytes); |
3043 | |
3044 | MAYBE_INIT_TCACHE (); |
3045 | |
3046 | DIAG_PUSH_NEEDS_COMMENT; |
3047 | if (tc_idx < mp_.tcache_bins |
3048 | && tcache |
3049 | && tcache->counts[tc_idx] > 0) |
3050 | { |
3051 | return tcache_get (tc_idx); |
3052 | } |
3053 | DIAG_POP_NEEDS_COMMENT; |
3054 | #endif |
3055 | |
3056 | if (SINGLE_THREAD_P) |
3057 | { |
3058 | victim = _int_malloc (&main_arena, bytes); |
3059 | assert (!victim || chunk_is_mmapped (mem2chunk (victim)) || |
3060 | &main_arena == arena_for_chunk (mem2chunk (victim))); |
3061 | return victim; |
3062 | } |
3063 | |
3064 | arena_get (ar_ptr, bytes); |
3065 | |
3066 | victim = _int_malloc (ar_ptr, bytes); |
3067 | /* Retry with another arena only if we were able to find a usable arena |
3068 | before. */ |
3069 | if (!victim && ar_ptr != NULL) |
3070 | { |
3071 | LIBC_PROBE (memory_malloc_retry, 1, bytes); |
3072 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
3073 | victim = _int_malloc (ar_ptr, bytes); |
3074 | } |
3075 | |
3076 | if (ar_ptr != NULL) |
3077 | __libc_lock_unlock (ar_ptr->mutex); |
3078 | |
3079 | assert (!victim || chunk_is_mmapped (mem2chunk (victim)) || |
3080 | ar_ptr == arena_for_chunk (mem2chunk (victim))); |
3081 | return victim; |
3082 | } |
3083 | libc_hidden_def (__libc_malloc) |
3084 | |
3085 | void |
3086 | __libc_free (void *mem) |
3087 | { |
3088 | mstate ar_ptr; |
3089 | mchunkptr p; /* chunk corresponding to mem */ |
3090 | |
3091 | void (*hook) (void *, const void *) |
3092 | = atomic_forced_read (__free_hook); |
3093 | if (__builtin_expect (hook != NULL, 0)) |
3094 | { |
3095 | (*hook)(mem, RETURN_ADDRESS (0)); |
3096 | return; |
3097 | } |
3098 | |
3099 | if (mem == 0) /* free(0) has no effect */ |
3100 | return; |
3101 | |
3102 | p = mem2chunk (mem); |
3103 | |
3104 | if (chunk_is_mmapped (p)) /* release mmapped memory. */ |
3105 | { |
3106 | /* See if the dynamic brk/mmap threshold needs adjusting. |
3107 | Dumped fake mmapped chunks do not affect the threshold. */ |
3108 | if (!mp_.no_dyn_threshold |
3109 | && chunksize_nomask (p) > mp_.mmap_threshold |
3110 | && chunksize_nomask (p) <= DEFAULT_MMAP_THRESHOLD_MAX |
3111 | && !DUMPED_MAIN_ARENA_CHUNK (p)) |
3112 | { |
3113 | mp_.mmap_threshold = chunksize (p); |
3114 | mp_.trim_threshold = 2 * mp_.mmap_threshold; |
3115 | LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2, |
3116 | mp_.mmap_threshold, mp_.trim_threshold); |
3117 | } |
3118 | munmap_chunk (p); |
3119 | return; |
3120 | } |
3121 | |
3122 | MAYBE_INIT_TCACHE (); |
3123 | |
3124 | ar_ptr = arena_for_chunk (p); |
3125 | _int_free (ar_ptr, p, 0); |
3126 | } |
3127 | libc_hidden_def (__libc_free) |
3128 | |
3129 | void * |
3130 | __libc_realloc (void *oldmem, size_t bytes) |
3131 | { |
3132 | mstate ar_ptr; |
3133 | INTERNAL_SIZE_T nb; /* padded request size */ |
3134 | |
3135 | void *newp; /* chunk to return */ |
3136 | |
3137 | void *(*hook) (void *, size_t, const void *) = |
3138 | atomic_forced_read (__realloc_hook); |
3139 | if (__builtin_expect (hook != NULL, 0)) |
3140 | return (*hook)(oldmem, bytes, RETURN_ADDRESS (0)); |
3141 | |
3142 | #if REALLOC_ZERO_BYTES_FREES |
3143 | if (bytes == 0 && oldmem != NULL) |
3144 | { |
3145 | __libc_free (oldmem); return 0; |
3146 | } |
3147 | #endif |
3148 | |
3149 | /* realloc of null is supposed to be same as malloc */ |
3150 | if (oldmem == 0) |
3151 | return __libc_malloc (bytes); |
3152 | |
3153 | /* chunk corresponding to oldmem */ |
3154 | const mchunkptr oldp = mem2chunk (oldmem); |
3155 | /* its size */ |
3156 | const INTERNAL_SIZE_T oldsize = chunksize (oldp); |
3157 | |
3158 | if (chunk_is_mmapped (oldp)) |
3159 | ar_ptr = NULL; |
3160 | else |
3161 | { |
3162 | MAYBE_INIT_TCACHE (); |
3163 | ar_ptr = arena_for_chunk (oldp); |
3164 | } |
3165 | |
3166 | /* Little security check which won't hurt performance: the allocator |
3167 | never wrapps around at the end of the address space. Therefore |
3168 | we can exclude some size values which might appear here by |
3169 | accident or by "design" from some intruder. We need to bypass |
3170 | this check for dumped fake mmap chunks from the old main arena |
3171 | because the new malloc may provide additional alignment. */ |
3172 | if ((__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0) |
3173 | || __builtin_expect (misaligned_chunk (oldp), 0)) |
3174 | && !DUMPED_MAIN_ARENA_CHUNK (oldp)) |
3175 | malloc_printerr ("realloc(): invalid pointer" ); |
3176 | |
3177 | checked_request2size (bytes, nb); |
3178 | |
3179 | if (chunk_is_mmapped (oldp)) |
3180 | { |
3181 | /* If this is a faked mmapped chunk from the dumped main arena, |
3182 | always make a copy (and do not free the old chunk). */ |
3183 | if (DUMPED_MAIN_ARENA_CHUNK (oldp)) |
3184 | { |
3185 | /* Must alloc, copy, free. */ |
3186 | void *newmem = __libc_malloc (bytes); |
3187 | if (newmem == 0) |
3188 | return NULL; |
3189 | /* Copy as many bytes as are available from the old chunk |
3190 | and fit into the new size. NB: The overhead for faked |
3191 | mmapped chunks is only SIZE_SZ, not 2 * SIZE_SZ as for |
3192 | regular mmapped chunks. */ |
3193 | if (bytes > oldsize - SIZE_SZ) |
3194 | bytes = oldsize - SIZE_SZ; |
3195 | memcpy (newmem, oldmem, bytes); |
3196 | return newmem; |
3197 | } |
3198 | |
3199 | void *newmem; |
3200 | |
3201 | #if HAVE_MREMAP |
3202 | newp = mremap_chunk (oldp, nb); |
3203 | if (newp) |
3204 | return chunk2mem (newp); |
3205 | #endif |
3206 | /* Note the extra SIZE_SZ overhead. */ |
3207 | if (oldsize - SIZE_SZ >= nb) |
3208 | return oldmem; /* do nothing */ |
3209 | |
3210 | /* Must alloc, copy, free. */ |
3211 | newmem = __libc_malloc (bytes); |
3212 | if (newmem == 0) |
3213 | return 0; /* propagate failure */ |
3214 | |
3215 | memcpy (newmem, oldmem, oldsize - 2 * SIZE_SZ); |
3216 | munmap_chunk (oldp); |
3217 | return newmem; |
3218 | } |
3219 | |
3220 | if (SINGLE_THREAD_P) |
3221 | { |
3222 | newp = _int_realloc (ar_ptr, oldp, oldsize, nb); |
3223 | assert (!newp || chunk_is_mmapped (mem2chunk (newp)) || |
3224 | ar_ptr == arena_for_chunk (mem2chunk (newp))); |
3225 | |
3226 | return newp; |
3227 | } |
3228 | |
3229 | __libc_lock_lock (ar_ptr->mutex); |
3230 | |
3231 | newp = _int_realloc (ar_ptr, oldp, oldsize, nb); |
3232 | |
3233 | __libc_lock_unlock (ar_ptr->mutex); |
3234 | assert (!newp || chunk_is_mmapped (mem2chunk (newp)) || |
3235 | ar_ptr == arena_for_chunk (mem2chunk (newp))); |
3236 | |
3237 | if (newp == NULL) |
3238 | { |
3239 | /* Try harder to allocate memory in other arenas. */ |
3240 | LIBC_PROBE (memory_realloc_retry, 2, bytes, oldmem); |
3241 | newp = __libc_malloc (bytes); |
3242 | if (newp != NULL) |
3243 | { |
3244 | memcpy (newp, oldmem, oldsize - SIZE_SZ); |
3245 | _int_free (ar_ptr, oldp, 0); |
3246 | } |
3247 | } |
3248 | |
3249 | return newp; |
3250 | } |
3251 | libc_hidden_def (__libc_realloc) |
3252 | |
3253 | void * |
3254 | __libc_memalign (size_t alignment, size_t bytes) |
3255 | { |
3256 | void *address = RETURN_ADDRESS (0); |
3257 | return _mid_memalign (alignment, bytes, address); |
3258 | } |
3259 | |
3260 | static void * |
3261 | _mid_memalign (size_t alignment, size_t bytes, void *address) |
3262 | { |
3263 | mstate ar_ptr; |
3264 | void *p; |
3265 | |
3266 | void *(*hook) (size_t, size_t, const void *) = |
3267 | atomic_forced_read (__memalign_hook); |
3268 | if (__builtin_expect (hook != NULL, 0)) |
3269 | return (*hook)(alignment, bytes, address); |
3270 | |
3271 | /* If we need less alignment than we give anyway, just relay to malloc. */ |
3272 | if (alignment <= MALLOC_ALIGNMENT) |
3273 | return __libc_malloc (bytes); |
3274 | |
3275 | /* Otherwise, ensure that it is at least a minimum chunk size */ |
3276 | if (alignment < MINSIZE) |
3277 | alignment = MINSIZE; |
3278 | |
3279 | /* If the alignment is greater than SIZE_MAX / 2 + 1 it cannot be a |
3280 | power of 2 and will cause overflow in the check below. */ |
3281 | if (alignment > SIZE_MAX / 2 + 1) |
3282 | { |
3283 | __set_errno (EINVAL); |
3284 | return 0; |
3285 | } |
3286 | |
3287 | /* Check for overflow. */ |
3288 | if (bytes > SIZE_MAX - alignment - MINSIZE) |
3289 | { |
3290 | __set_errno (ENOMEM); |
3291 | return 0; |
3292 | } |
3293 | |
3294 | |
3295 | /* Make sure alignment is power of 2. */ |
3296 | if (!powerof2 (alignment)) |
3297 | { |
3298 | size_t a = MALLOC_ALIGNMENT * 2; |
3299 | while (a < alignment) |
3300 | a <<= 1; |
3301 | alignment = a; |
3302 | } |
3303 | |
3304 | if (SINGLE_THREAD_P) |
3305 | { |
3306 | p = _int_memalign (&main_arena, alignment, bytes); |
3307 | assert (!p || chunk_is_mmapped (mem2chunk (p)) || |
3308 | &main_arena == arena_for_chunk (mem2chunk (p))); |
3309 | |
3310 | return p; |
3311 | } |
3312 | |
3313 | arena_get (ar_ptr, bytes + alignment + MINSIZE); |
3314 | |
3315 | p = _int_memalign (ar_ptr, alignment, bytes); |
3316 | if (!p && ar_ptr != NULL) |
3317 | { |
3318 | LIBC_PROBE (memory_memalign_retry, 2, bytes, alignment); |
3319 | ar_ptr = arena_get_retry (ar_ptr, bytes); |
3320 | p = _int_memalign (ar_ptr, alignment, bytes); |
3321 | } |
3322 | |
3323 | if (ar_ptr != NULL) |
3324 | __libc_lock_unlock (ar_ptr->mutex); |
3325 | |
3326 | assert (!p || chunk_is_mmapped (mem2chunk (p)) || |
3327 | ar_ptr == arena_for_chunk (mem2chunk (p))); |
3328 | return p; |
3329 | } |
3330 | /* For ISO C11. */ |
3331 | weak_alias (__libc_memalign, aligned_alloc) |
3332 | libc_hidden_def (__libc_memalign) |
3333 | |
3334 | void * |
3335 | __libc_valloc (size_t bytes) |
3336 | { |
3337 | if (__malloc_initialized < 0) |
3338 | ptmalloc_init (); |
3339 | |
3340 | void *address = RETURN_ADDRESS (0); |
3341 | size_t pagesize = GLRO (dl_pagesize); |
3342 | return _mid_memalign (pagesize, bytes, address); |
3343 | } |
3344 | |
3345 | void * |
3346 | __libc_pvalloc (size_t bytes) |
3347 | { |
3348 | if (__malloc_initialized < 0) |
3349 | ptmalloc_init (); |
3350 | |
3351 | void *address = RETURN_ADDRESS (0); |
3352 | size_t pagesize = GLRO (dl_pagesize); |
3353 | size_t rounded_bytes = ALIGN_UP (bytes, pagesize); |
3354 | |
3355 | /* Check for overflow. */ |
3356 | if (bytes > SIZE_MAX - 2 * pagesize - MINSIZE) |
3357 | { |
3358 | __set_errno (ENOMEM); |
3359 | return 0; |
3360 | } |
3361 | |
3362 | return _mid_memalign (pagesize, rounded_bytes, address); |
3363 | } |
3364 | |
3365 | void * |
3366 | __libc_calloc (size_t n, size_t elem_size) |
3367 | { |
3368 | mstate av; |
3369 | mchunkptr oldtop, p; |
3370 | INTERNAL_SIZE_T bytes, sz, csz, oldtopsize; |
3371 | void *mem; |
3372 | unsigned long clearsize; |
3373 | unsigned long nclears; |
3374 | INTERNAL_SIZE_T *d; |
3375 | |
3376 | /* size_t is unsigned so the behavior on overflow is defined. */ |
3377 | bytes = n * elem_size; |
3378 | #define HALF_INTERNAL_SIZE_T \ |
3379 | (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2)) |
3380 | if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) |
3381 | { |
3382 | if (elem_size != 0 && bytes / elem_size != n) |
3383 | { |
3384 | __set_errno (ENOMEM); |
3385 | return 0; |
3386 | } |
3387 | } |
3388 | |
3389 | void *(*hook) (size_t, const void *) = |
3390 | atomic_forced_read (__malloc_hook); |
3391 | if (__builtin_expect (hook != NULL, 0)) |
3392 | { |
3393 | sz = bytes; |
3394 | mem = (*hook)(sz, RETURN_ADDRESS (0)); |
3395 | if (mem == 0) |
3396 | return 0; |
3397 | |
3398 | return memset (mem, 0, sz); |
3399 | } |
3400 | |
3401 | sz = bytes; |
3402 | |
3403 | MAYBE_INIT_TCACHE (); |
3404 | |
3405 | if (SINGLE_THREAD_P) |
3406 | av = &main_arena; |
3407 | else |
3408 | arena_get (av, sz); |
3409 | |
3410 | if (av) |
3411 | { |
3412 | /* Check if we hand out the top chunk, in which case there may be no |
3413 | need to clear. */ |
3414 | #if MORECORE_CLEARS |
3415 | oldtop = top (av); |
3416 | oldtopsize = chunksize (top (av)); |
3417 | # if MORECORE_CLEARS < 2 |
3418 | /* Only newly allocated memory is guaranteed to be cleared. */ |
3419 | if (av == &main_arena && |
3420 | oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *) oldtop) |
3421 | oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *) oldtop); |
3422 | # endif |
3423 | if (av != &main_arena) |
3424 | { |
3425 | heap_info *heap = heap_for_ptr (oldtop); |
3426 | if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop) |
3427 | oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop; |
3428 | } |
3429 | #endif |
3430 | } |
3431 | else |
3432 | { |
3433 | /* No usable arenas. */ |
3434 | oldtop = 0; |
3435 | oldtopsize = 0; |
3436 | } |
3437 | mem = _int_malloc (av, sz); |
3438 | |
3439 | assert (!mem || chunk_is_mmapped (mem2chunk (mem)) || |
3440 | av == arena_for_chunk (mem2chunk (mem))); |
3441 | |
3442 | if (!SINGLE_THREAD_P) |
3443 | { |
3444 | if (mem == 0 && av != NULL) |
3445 | { |
3446 | LIBC_PROBE (memory_calloc_retry, 1, sz); |
3447 | av = arena_get_retry (av, sz); |
3448 | mem = _int_malloc (av, sz); |
3449 | } |
3450 | |
3451 | if (av != NULL) |
3452 | __libc_lock_unlock (av->mutex); |
3453 | } |
3454 | |
3455 | /* Allocation failed even after a retry. */ |
3456 | if (mem == 0) |
3457 | return 0; |
3458 | |
3459 | p = mem2chunk (mem); |
3460 | |
3461 | /* Two optional cases in which clearing not necessary */ |
3462 | if (chunk_is_mmapped (p)) |
3463 | { |
3464 | if (__builtin_expect (perturb_byte, 0)) |
3465 | return memset (mem, 0, sz); |
3466 | |
3467 | return mem; |
3468 | } |
3469 | |
3470 | csz = chunksize (p); |
3471 | |
3472 | #if MORECORE_CLEARS |
3473 | if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize)) |
3474 | { |
3475 | /* clear only the bytes from non-freshly-sbrked memory */ |
3476 | csz = oldtopsize; |
3477 | } |
3478 | #endif |
3479 | |
3480 | /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that |
3481 | contents have an odd number of INTERNAL_SIZE_T-sized words; |
3482 | minimally 3. */ |
3483 | d = (INTERNAL_SIZE_T *) mem; |
3484 | clearsize = csz - SIZE_SZ; |
3485 | nclears = clearsize / sizeof (INTERNAL_SIZE_T); |
3486 | assert (nclears >= 3); |
3487 | |
3488 | if (nclears > 9) |
3489 | return memset (d, 0, clearsize); |
3490 | |
3491 | else |
3492 | { |
3493 | *(d + 0) = 0; |
3494 | *(d + 1) = 0; |
3495 | *(d + 2) = 0; |
3496 | if (nclears > 4) |
3497 | { |
3498 | *(d + 3) = 0; |
3499 | *(d + 4) = 0; |
3500 | if (nclears > 6) |
3501 | { |
3502 | *(d + 5) = 0; |
3503 | *(d + 6) = 0; |
3504 | if (nclears > 8) |
3505 | { |
3506 | *(d + 7) = 0; |
3507 | *(d + 8) = 0; |
3508 | } |
3509 | } |
3510 | } |
3511 | } |
3512 | |
3513 | return mem; |
3514 | } |
3515 | |
3516 | /* |
3517 | ------------------------------ malloc ------------------------------ |
3518 | */ |
3519 | |
3520 | static void * |
3521 | _int_malloc (mstate av, size_t bytes) |
3522 | { |
3523 | INTERNAL_SIZE_T nb; /* normalized request size */ |
3524 | unsigned int idx; /* associated bin index */ |
3525 | mbinptr bin; /* associated bin */ |
3526 | |
3527 | mchunkptr victim; /* inspected/selected chunk */ |
3528 | INTERNAL_SIZE_T size; /* its size */ |
3529 | int victim_index; /* its bin index */ |
3530 | |
3531 | mchunkptr remainder; /* remainder from a split */ |
3532 | unsigned long remainder_size; /* its size */ |
3533 | |
3534 | unsigned int block; /* bit map traverser */ |
3535 | unsigned int bit; /* bit map traverser */ |
3536 | unsigned int map; /* current word of binmap */ |
3537 | |
3538 | mchunkptr fwd; /* misc temp for linking */ |
3539 | mchunkptr bck; /* misc temp for linking */ |
3540 | |
3541 | #if USE_TCACHE |
3542 | size_t tcache_unsorted_count; /* count of unsorted chunks processed */ |
3543 | #endif |
3544 | |
3545 | /* |
3546 | Convert request size to internal form by adding SIZE_SZ bytes |
3547 | overhead plus possibly more to obtain necessary alignment and/or |
3548 | to obtain a size of at least MINSIZE, the smallest allocatable |
3549 | size. Also, checked_request2size traps (returning 0) request sizes |
3550 | that are so large that they wrap around zero when padded and |
3551 | aligned. |
3552 | */ |
3553 | |
3554 | checked_request2size (bytes, nb); |
3555 | |
3556 | /* There are no usable arenas. Fall back to sysmalloc to get a chunk from |
3557 | mmap. */ |
3558 | if (__glibc_unlikely (av == NULL)) |
3559 | { |
3560 | void *p = sysmalloc (nb, av); |
3561 | if (p != NULL) |
3562 | alloc_perturb (p, bytes); |
3563 | return p; |
3564 | } |
3565 | |
3566 | /* |
3567 | If the size qualifies as a fastbin, first check corresponding bin. |
3568 | This code is safe to execute even if av is not yet initialized, so we |
3569 | can try it without checking, which saves some time on this fast path. |
3570 | */ |
3571 | |
3572 | #define REMOVE_FB(fb, victim, pp) \ |
3573 | do \ |
3574 | { \ |
3575 | victim = pp; \ |
3576 | if (victim == NULL) \ |
3577 | break; \ |
3578 | } \ |
3579 | while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim)) \ |
3580 | != victim); \ |
3581 | |
3582 | if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ())) |
3583 | { |
3584 | idx = fastbin_index (nb); |
3585 | mfastbinptr *fb = &fastbin (av, idx); |
3586 | mchunkptr pp; |
3587 | victim = *fb; |
3588 | |
3589 | if (victim != NULL) |
3590 | { |
3591 | if (SINGLE_THREAD_P) |
3592 | *fb = victim->fd; |
3593 | else |
3594 | REMOVE_FB (fb, pp, victim); |
3595 | if (__glibc_likely (victim != NULL)) |
3596 | { |
3597 | size_t victim_idx = fastbin_index (chunksize (victim)); |
3598 | if (__builtin_expect (victim_idx != idx, 0)) |
3599 | malloc_printerr ("malloc(): memory corruption (fast)" ); |
3600 | check_remalloced_chunk (av, victim, nb); |
3601 | #if USE_TCACHE |
3602 | /* While we're here, if we see other chunks of the same size, |
3603 | stash them in the tcache. */ |
3604 | size_t tc_idx = csize2tidx (nb); |
3605 | if (tcache && tc_idx < mp_.tcache_bins) |
3606 | { |
3607 | mchunkptr tc_victim; |
3608 | |
3609 | /* While bin not empty and tcache not full, copy chunks. */ |
3610 | while (tcache->counts[tc_idx] < mp_.tcache_count |
3611 | && (tc_victim = *fb) != NULL) |
3612 | { |
3613 | if (SINGLE_THREAD_P) |
3614 | *fb = tc_victim->fd; |
3615 | else |
3616 | { |
3617 | REMOVE_FB (fb, pp, tc_victim); |
3618 | if (__glibc_unlikely (tc_victim == NULL)) |
3619 | break; |
3620 | } |
3621 | tcache_put (tc_victim, tc_idx); |
3622 | } |
3623 | } |
3624 | #endif |
3625 | void *p = chunk2mem (victim); |
3626 | alloc_perturb (p, bytes); |
3627 | return p; |
3628 | } |
3629 | } |
3630 | } |
3631 | |
3632 | /* |
3633 | If a small request, check regular bin. Since these "smallbins" |
3634 | hold one size each, no searching within bins is necessary. |
3635 | (For a large request, we need to wait until unsorted chunks are |
3636 | processed to find best fit. But for small ones, fits are exact |
3637 | anyway, so we can check now, which is faster.) |
3638 | */ |
3639 | |
3640 | if (in_smallbin_range (nb)) |
3641 | { |
3642 | idx = smallbin_index (nb); |
3643 | bin = bin_at (av, idx); |
3644 | |
3645 | if ((victim = last (bin)) != bin) |
3646 | { |
3647 | bck = victim->bk; |
3648 | if (__glibc_unlikely (bck->fd != victim)) |
3649 | malloc_printerr ("malloc(): smallbin double linked list corrupted" ); |
3650 | set_inuse_bit_at_offset (victim, nb); |
3651 | bin->bk = bck; |
3652 | bck->fd = bin; |
3653 | |
3654 | if (av != &main_arena) |
3655 | set_non_main_arena (victim); |
3656 | check_malloced_chunk (av, victim, nb); |
3657 | #if USE_TCACHE |
3658 | /* While we're here, if we see other chunks of the same size, |
3659 | stash them in the tcache. */ |
3660 | size_t tc_idx = csize2tidx (nb); |
3661 | if (tcache && tc_idx < mp_.tcache_bins) |
3662 | { |
3663 | mchunkptr tc_victim; |
3664 | |
3665 | /* While bin not empty and tcache not full, copy chunks over. */ |
3666 | while (tcache->counts[tc_idx] < mp_.tcache_count |
3667 | && (tc_victim = last (bin)) != bin) |
3668 | { |
3669 | if (tc_victim != 0) |
3670 | { |
3671 | bck = tc_victim->bk; |
3672 | set_inuse_bit_at_offset (tc_victim, nb); |
3673 | if (av != &main_arena) |
3674 | set_non_main_arena (tc_victim); |
3675 | bin->bk = bck; |
3676 | bck->fd = bin; |
3677 | |
3678 | tcache_put (tc_victim, tc_idx); |
3679 | } |
3680 | } |
3681 | } |
3682 | #endif |
3683 | void *p = chunk2mem (victim); |
3684 | alloc_perturb (p, bytes); |
3685 | return p; |
3686 | } |
3687 | } |
3688 | |
3689 | /* |
3690 | If this is a large request, consolidate fastbins before continuing. |
3691 | While it might look excessive to kill all fastbins before |
3692 | even seeing if there is space available, this avoids |
3693 | fragmentation problems normally associated with fastbins. |
3694 | Also, in practice, programs tend to have runs of either small or |
3695 | large requests, but less often mixtures, so consolidation is not |
3696 | invoked all that often in most programs. And the programs that |
3697 | it is called frequently in otherwise tend to fragment. |
3698 | */ |
3699 | |
3700 | else |
3701 | { |
3702 | idx = largebin_index (nb); |
3703 | if (atomic_load_relaxed (&av->have_fastchunks)) |
3704 | malloc_consolidate (av); |
3705 | } |
3706 | |
3707 | /* |
3708 | Process recently freed or remaindered chunks, taking one only if |
3709 | it is exact fit, or, if this a small request, the chunk is remainder from |
3710 | the most recent non-exact fit. Place other traversed chunks in |
3711 | bins. Note that this step is the only place in any routine where |
3712 | chunks are placed in bins. |
3713 | |
3714 | The outer loop here is needed because we might not realize until |
3715 | near the end of malloc that we should have consolidated, so must |
3716 | do so and retry. This happens at most once, and only when we would |
3717 | otherwise need to expand memory to service a "small" request. |
3718 | */ |
3719 | |
3720 | #if USE_TCACHE |
3721 | INTERNAL_SIZE_T tcache_nb = 0; |
3722 | size_t tc_idx = csize2tidx (nb); |
3723 | if (tcache && tc_idx < mp_.tcache_bins) |
3724 | tcache_nb = nb; |
3725 | int return_cached = 0; |
3726 | |
3727 | tcache_unsorted_count = 0; |
3728 | #endif |
3729 | |
3730 | for (;; ) |
3731 | { |
3732 | int iters = 0; |
3733 | while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av)) |
3734 | { |
3735 | bck = victim->bk; |
3736 | size = chunksize (victim); |
3737 | mchunkptr next = chunk_at_offset (victim, size); |
3738 | |
3739 | if (__glibc_unlikely (size <= 2 * SIZE_SZ) |
3740 | || __glibc_unlikely (size > av->system_mem)) |
3741 | malloc_printerr ("malloc(): invalid size (unsorted)" ); |
3742 | if (__glibc_unlikely (chunksize_nomask (next) < 2 * SIZE_SZ) |
3743 | || __glibc_unlikely (chunksize_nomask (next) > av->system_mem)) |
3744 | malloc_printerr ("malloc(): invalid next size (unsorted)" ); |
3745 | if (__glibc_unlikely ((prev_size (next) & ~(SIZE_BITS)) != size)) |
3746 | malloc_printerr ("malloc(): mismatching next->prev_size (unsorted)" ); |
3747 | if (__glibc_unlikely (bck->fd != victim) |
3748 | || __glibc_unlikely (victim->fd != unsorted_chunks (av))) |
3749 | malloc_printerr ("malloc(): unsorted double linked list corrupted" ); |
3750 | if (__glibc_unlikely (prev_inuse (next))) |
3751 | malloc_printerr ("malloc(): invalid next->prev_inuse (unsorted)" ); |
3752 | |
3753 | /* |
3754 | If a small request, try to use last remainder if it is the |
3755 | only chunk in unsorted bin. This helps promote locality for |
3756 | runs of consecutive small requests. This is the only |
3757 | exception to best-fit, and applies only when there is |
3758 | no exact fit for a small chunk. |
3759 | */ |
3760 | |
3761 | if (in_smallbin_range (nb) && |
3762 | bck == unsorted_chunks (av) && |
3763 | victim == av->last_remainder && |
3764 | (unsigned long) (size) > (unsigned long) (nb + MINSIZE)) |
3765 | { |
3766 | /* split and reattach remainder */ |
3767 | remainder_size = size - nb; |
3768 | remainder = chunk_at_offset (victim, nb); |
3769 | unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder; |
3770 | av->last_remainder = remainder; |
3771 | remainder->bk = remainder->fd = unsorted_chunks (av); |
3772 | if (!in_smallbin_range (remainder_size)) |
3773 | { |
3774 | remainder->fd_nextsize = NULL; |
3775 | remainder->bk_nextsize = NULL; |
3776 | } |
3777 | |
3778 | set_head (victim, nb | PREV_INUSE | |
3779 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
3780 | set_head (remainder, remainder_size | PREV_INUSE); |
3781 | set_foot (remainder, remainder_size); |
3782 | |
3783 | check_malloced_chunk (av, victim, nb); |
3784 | void *p = chunk2mem (victim); |
3785 | alloc_perturb (p, bytes); |
3786 | return p; |
3787 | } |
3788 | |
3789 | /* remove from unsorted list */ |
3790 | if (__glibc_unlikely (bck->fd != victim)) |
3791 | malloc_printerr ("malloc(): corrupted unsorted chunks 3" ); |
3792 | unsorted_chunks (av)->bk = bck; |
3793 | bck->fd = unsorted_chunks (av); |
3794 | |
3795 | /* Take now instead of binning if exact fit */ |
3796 | |
3797 | if (size == nb) |
3798 | { |
3799 | set_inuse_bit_at_offset (victim, size); |
3800 | if (av != &main_arena) |
3801 | set_non_main_arena (victim); |
3802 | #if USE_TCACHE |
3803 | /* Fill cache first, return to user only if cache fills. |
3804 | We may return one of these chunks later. */ |
3805 | if (tcache_nb |
3806 | && tcache->counts[tc_idx] < mp_.tcache_count) |
3807 | { |
3808 | tcache_put (victim, tc_idx); |
3809 | return_cached = 1; |
3810 | continue; |
3811 | } |
3812 | else |
3813 | { |
3814 | #endif |
3815 | check_malloced_chunk (av, victim, nb); |
3816 | void *p = chunk2mem (victim); |
3817 | alloc_perturb (p, bytes); |
3818 | return p; |
3819 | #if USE_TCACHE |
3820 | } |
3821 | #endif |
3822 | } |
3823 | |
3824 | /* place chunk in bin */ |
3825 | |
3826 | if (in_smallbin_range (size)) |
3827 | { |
3828 | victim_index = smallbin_index (size); |
3829 | bck = bin_at (av, victim_index); |
3830 | fwd = bck->fd; |
3831 | } |
3832 | else |
3833 | { |
3834 | victim_index = largebin_index (size); |
3835 | bck = bin_at (av, victim_index); |
3836 | fwd = bck->fd; |
3837 | |
3838 | /* maintain large bins in sorted order */ |
3839 | if (fwd != bck) |
3840 | { |
3841 | /* Or with inuse bit to speed comparisons */ |
3842 | size |= PREV_INUSE; |
3843 | /* if smaller than smallest, bypass loop below */ |
3844 | assert (chunk_main_arena (bck->bk)); |
3845 | if ((unsigned long) (size) |
3846 | < (unsigned long) chunksize_nomask (bck->bk)) |
3847 | { |
3848 | fwd = bck; |
3849 | bck = bck->bk; |
3850 | |
3851 | victim->fd_nextsize = fwd->fd; |
3852 | victim->bk_nextsize = fwd->fd->bk_nextsize; |
3853 | fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim; |
3854 | } |
3855 | else |
3856 | { |
3857 | assert (chunk_main_arena (fwd)); |
3858 | while ((unsigned long) size < chunksize_nomask (fwd)) |
3859 | { |
3860 | fwd = fwd->fd_nextsize; |
3861 | assert (chunk_main_arena (fwd)); |
3862 | } |
3863 | |
3864 | if ((unsigned long) size |
3865 | == (unsigned long) chunksize_nomask (fwd)) |
3866 | /* Always insert in the second position. */ |
3867 | fwd = fwd->fd; |
3868 | else |
3869 | { |
3870 | victim->fd_nextsize = fwd; |
3871 | victim->bk_nextsize = fwd->bk_nextsize; |
3872 | if (__glibc_unlikely (fwd->bk_nextsize->fd_nextsize != fwd)) |
3873 | malloc_printerr ("malloc(): largebin double linked list corrupted (nextsize)" ); |
3874 | fwd->bk_nextsize = victim; |
3875 | victim->bk_nextsize->fd_nextsize = victim; |
3876 | } |
3877 | bck = fwd->bk; |
3878 | if (bck->fd != fwd) |
3879 | malloc_printerr ("malloc(): largebin double linked list corrupted (bk)" ); |
3880 | } |
3881 | } |
3882 | else |
3883 | victim->fd_nextsize = victim->bk_nextsize = victim; |
3884 | } |
3885 | |
3886 | mark_bin (av, victim_index); |
3887 | victim->bk = bck; |
3888 | victim->fd = fwd; |
3889 | fwd->bk = victim; |
3890 | bck->fd = victim; |
3891 | |
3892 | #if USE_TCACHE |
3893 | /* If we've processed as many chunks as we're allowed while |
3894 | filling the cache, return one of the cached ones. */ |
3895 | ++tcache_unsorted_count; |
3896 | if (return_cached |
3897 | && mp_.tcache_unsorted_limit > 0 |
3898 | && tcache_unsorted_count > mp_.tcache_unsorted_limit) |
3899 | { |
3900 | return tcache_get (tc_idx); |
3901 | } |
3902 | #endif |
3903 | |
3904 | #define MAX_ITERS 10000 |
3905 | if (++iters >= MAX_ITERS) |
3906 | break; |
3907 | } |
3908 | |
3909 | #if USE_TCACHE |
3910 | /* If all the small chunks we found ended up cached, return one now. */ |
3911 | if (return_cached) |
3912 | { |
3913 | return tcache_get (tc_idx); |
3914 | } |
3915 | #endif |
3916 | |
3917 | /* |
3918 | If a large request, scan through the chunks of current bin in |
3919 | sorted order to find smallest that fits. Use the skip list for this. |
3920 | */ |
3921 | |
3922 | if (!in_smallbin_range (nb)) |
3923 | { |
3924 | bin = bin_at (av, idx); |
3925 | |
3926 | /* skip scan if empty or largest chunk is too small */ |
3927 | if ((victim = first (bin)) != bin |
3928 | && (unsigned long) chunksize_nomask (victim) |
3929 | >= (unsigned long) (nb)) |
3930 | { |
3931 | victim = victim->bk_nextsize; |
3932 | while (((unsigned long) (size = chunksize (victim)) < |
3933 | (unsigned long) (nb))) |
3934 | victim = victim->bk_nextsize; |
3935 | |
3936 | /* Avoid removing the first entry for a size so that the skip |
3937 | list does not have to be rerouted. */ |
3938 | if (victim != last (bin) |
3939 | && chunksize_nomask (victim) |
3940 | == chunksize_nomask (victim->fd)) |
3941 | victim = victim->fd; |
3942 | |
3943 | remainder_size = size - nb; |
3944 | unlink (av, victim, bck, fwd); |
3945 | |
3946 | /* Exhaust */ |
3947 | if (remainder_size < MINSIZE) |
3948 | { |
3949 | set_inuse_bit_at_offset (victim, size); |
3950 | if (av != &main_arena) |
3951 | set_non_main_arena (victim); |
3952 | } |
3953 | /* Split */ |
3954 | else |
3955 | { |
3956 | remainder = chunk_at_offset (victim, nb); |
3957 | /* We cannot assume the unsorted list is empty and therefore |
3958 | have to perform a complete insert here. */ |
3959 | bck = unsorted_chunks (av); |
3960 | fwd = bck->fd; |
3961 | if (__glibc_unlikely (fwd->bk != bck)) |
3962 | malloc_printerr ("malloc(): corrupted unsorted chunks" ); |
3963 | remainder->bk = bck; |
3964 | remainder->fd = fwd; |
3965 | bck->fd = remainder; |
3966 | fwd->bk = remainder; |
3967 | if (!in_smallbin_range (remainder_size)) |
3968 | { |
3969 | remainder->fd_nextsize = NULL; |
3970 | remainder->bk_nextsize = NULL; |
3971 | } |
3972 | set_head (victim, nb | PREV_INUSE | |
3973 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
3974 | set_head (remainder, remainder_size | PREV_INUSE); |
3975 | set_foot (remainder, remainder_size); |
3976 | } |
3977 | check_malloced_chunk (av, victim, nb); |
3978 | void *p = chunk2mem (victim); |
3979 | alloc_perturb (p, bytes); |
3980 | return p; |
3981 | } |
3982 | } |
3983 | |
3984 | /* |
3985 | Search for a chunk by scanning bins, starting with next largest |
3986 | bin. This search is strictly by best-fit; i.e., the smallest |
3987 | (with ties going to approximately the least recently used) chunk |
3988 | that fits is selected. |
3989 | |
3990 | The bitmap avoids needing to check that most blocks are nonempty. |
3991 | The particular case of skipping all bins during warm-up phases |
3992 | when no chunks have been returned yet is faster than it might look. |
3993 | */ |
3994 | |
3995 | ++idx; |
3996 | bin = bin_at (av, idx); |
3997 | block = idx2block (idx); |
3998 | map = av->binmap[block]; |
3999 | bit = idx2bit (idx); |
4000 | |
4001 | for (;; ) |
4002 | { |
4003 | /* Skip rest of block if there are no more set bits in this block. */ |
4004 | if (bit > map || bit == 0) |
4005 | { |
4006 | do |
4007 | { |
4008 | if (++block >= BINMAPSIZE) /* out of bins */ |
4009 | goto use_top; |
4010 | } |
4011 | while ((map = av->binmap[block]) == 0); |
4012 | |
4013 | bin = bin_at (av, (block << BINMAPSHIFT)); |
4014 | bit = 1; |
4015 | } |
4016 | |
4017 | /* Advance to bin with set bit. There must be one. */ |
4018 | while ((bit & map) == 0) |
4019 | { |
4020 | bin = next_bin (bin); |
4021 | bit <<= 1; |
4022 | assert (bit != 0); |
4023 | } |
4024 | |
4025 | /* Inspect the bin. It is likely to be non-empty */ |
4026 | victim = last (bin); |
4027 | |
4028 | /* If a false alarm (empty bin), clear the bit. */ |
4029 | if (victim == bin) |
4030 | { |
4031 | av->binmap[block] = map &= ~bit; /* Write through */ |
4032 | bin = next_bin (bin); |
4033 | bit <<= 1; |
4034 | } |
4035 | |
4036 | else |
4037 | { |
4038 | size = chunksize (victim); |
4039 | |
4040 | /* We know the first chunk in this bin is big enough to use. */ |
4041 | assert ((unsigned long) (size) >= (unsigned long) (nb)); |
4042 | |
4043 | remainder_size = size - nb; |
4044 | |
4045 | /* unlink */ |
4046 | unlink (av, victim, bck, fwd); |
4047 | |
4048 | /* Exhaust */ |
4049 | if (remainder_size < MINSIZE) |
4050 | { |
4051 | set_inuse_bit_at_offset (victim, size); |
4052 | if (av != &main_arena) |
4053 | set_non_main_arena (victim); |
4054 | } |
4055 | |
4056 | /* Split */ |
4057 | else |
4058 | { |
4059 | remainder = chunk_at_offset (victim, nb); |
4060 | |
4061 | /* We cannot assume the unsorted list is empty and therefore |
4062 | have to perform a complete insert here. */ |
4063 | bck = unsorted_chunks (av); |
4064 | fwd = bck->fd; |
4065 | if (__glibc_unlikely (fwd->bk != bck)) |
4066 | malloc_printerr ("malloc(): corrupted unsorted chunks 2" ); |
4067 | remainder->bk = bck; |
4068 | remainder->fd = fwd; |
4069 | bck->fd = remainder; |
4070 | fwd->bk = remainder; |
4071 | |
4072 | /* advertise as last remainder */ |
4073 | if (in_smallbin_range (nb)) |
4074 | av->last_remainder = remainder; |
4075 | if (!in_smallbin_range (remainder_size)) |
4076 | { |
4077 | remainder->fd_nextsize = NULL; |
4078 | remainder->bk_nextsize = NULL; |
4079 | } |
4080 | set_head (victim, nb | PREV_INUSE | |
4081 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4082 | set_head (remainder, remainder_size | PREV_INUSE); |
4083 | set_foot (remainder, remainder_size); |
4084 | } |
4085 | check_malloced_chunk (av, victim, nb); |
4086 | void *p = chunk2mem (victim); |
4087 | alloc_perturb (p, bytes); |
4088 | return p; |
4089 | } |
4090 | } |
4091 | |
4092 | use_top: |
4093 | /* |
4094 | If large enough, split off the chunk bordering the end of memory |
4095 | (held in av->top). Note that this is in accord with the best-fit |
4096 | search rule. In effect, av->top is treated as larger (and thus |
4097 | less well fitting) than any other available chunk since it can |
4098 | be extended to be as large as necessary (up to system |
4099 | limitations). |
4100 | |
4101 | We require that av->top always exists (i.e., has size >= |
4102 | MINSIZE) after initialization, so if it would otherwise be |
4103 | exhausted by current request, it is replenished. (The main |
4104 | reason for ensuring it exists is that we may need MINSIZE space |
4105 | to put in fenceposts in sysmalloc.) |
4106 | */ |
4107 | |
4108 | victim = av->top; |
4109 | size = chunksize (victim); |
4110 | |
4111 | if (__glibc_unlikely (size > av->system_mem)) |
4112 | malloc_printerr ("malloc(): corrupted top size" ); |
4113 | |
4114 | if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE)) |
4115 | { |
4116 | remainder_size = size - nb; |
4117 | remainder = chunk_at_offset (victim, nb); |
4118 | av->top = remainder; |
4119 | set_head (victim, nb | PREV_INUSE | |
4120 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4121 | set_head (remainder, remainder_size | PREV_INUSE); |
4122 | |
4123 | check_malloced_chunk (av, victim, nb); |
4124 | void *p = chunk2mem (victim); |
4125 | alloc_perturb (p, bytes); |
4126 | return p; |
4127 | } |
4128 | |
4129 | /* When we are using atomic ops to free fast chunks we can get |
4130 | here for all block sizes. */ |
4131 | else if (atomic_load_relaxed (&av->have_fastchunks)) |
4132 | { |
4133 | malloc_consolidate (av); |
4134 | /* restore original bin index */ |
4135 | if (in_smallbin_range (nb)) |
4136 | idx = smallbin_index (nb); |
4137 | else |
4138 | idx = largebin_index (nb); |
4139 | } |
4140 | |
4141 | /* |
4142 | Otherwise, relay to handle system-dependent cases |
4143 | */ |
4144 | else |
4145 | { |
4146 | void *p = sysmalloc (nb, av); |
4147 | if (p != NULL) |
4148 | alloc_perturb (p, bytes); |
4149 | return p; |
4150 | } |
4151 | } |
4152 | } |
4153 | |
4154 | /* |
4155 | ------------------------------ free ------------------------------ |
4156 | */ |
4157 | |
4158 | static void |
4159 | _int_free (mstate av, mchunkptr p, int have_lock) |
4160 | { |
4161 | INTERNAL_SIZE_T size; /* its size */ |
4162 | mfastbinptr *fb; /* associated fastbin */ |
4163 | mchunkptr nextchunk; /* next contiguous chunk */ |
4164 | INTERNAL_SIZE_T nextsize; /* its size */ |
4165 | int nextinuse; /* true if nextchunk is used */ |
4166 | INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */ |
4167 | mchunkptr bck; /* misc temp for linking */ |
4168 | mchunkptr fwd; /* misc temp for linking */ |
4169 | |
4170 | size = chunksize (p); |
4171 | |
4172 | /* Little security check which won't hurt performance: the |
4173 | allocator never wrapps around at the end of the address space. |
4174 | Therefore we can exclude some size values which might appear |
4175 | here by accident or by "design" from some intruder. */ |
4176 | if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0) |
4177 | || __builtin_expect (misaligned_chunk (p), 0)) |
4178 | malloc_printerr ("free(): invalid pointer" ); |
4179 | /* We know that each chunk is at least MINSIZE bytes in size or a |
4180 | multiple of MALLOC_ALIGNMENT. */ |
4181 | if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size))) |
4182 | malloc_printerr ("free(): invalid size" ); |
4183 | |
4184 | check_inuse_chunk(av, p); |
4185 | |
4186 | #if USE_TCACHE |
4187 | { |
4188 | size_t tc_idx = csize2tidx (size); |
4189 | if (tcache != NULL && tc_idx < mp_.tcache_bins) |
4190 | { |
4191 | /* Check to see if it's already in the tcache. */ |
4192 | tcache_entry *e = (tcache_entry *) chunk2mem (p); |
4193 | |
4194 | /* This test succeeds on double free. However, we don't 100% |
4195 | trust it (it also matches random payload data at a 1 in |
4196 | 2^<size_t> chance), so verify it's not an unlikely |
4197 | coincidence before aborting. */ |
4198 | if (__glibc_unlikely (e->key == tcache)) |
4199 | { |
4200 | tcache_entry *tmp; |
4201 | LIBC_PROBE (memory_tcache_double_free, 2, e, tc_idx); |
4202 | for (tmp = tcache->entries[tc_idx]; |
4203 | tmp; |
4204 | tmp = tmp->next) |
4205 | if (tmp == e) |
4206 | malloc_printerr ("free(): double free detected in tcache 2" ); |
4207 | /* If we get here, it was a coincidence. We've wasted a |
4208 | few cycles, but don't abort. */ |
4209 | } |
4210 | |
4211 | if (tcache->counts[tc_idx] < mp_.tcache_count) |
4212 | { |
4213 | tcache_put (p, tc_idx); |
4214 | return; |
4215 | } |
4216 | } |
4217 | } |
4218 | #endif |
4219 | |
4220 | /* |
4221 | If eligible, place chunk on a fastbin so it can be found |
4222 | and used quickly in malloc. |
4223 | */ |
4224 | |
4225 | if ((unsigned long)(size) <= (unsigned long)(get_max_fast ()) |
4226 | |
4227 | #if TRIM_FASTBINS |
4228 | /* |
4229 | If TRIM_FASTBINS set, don't place chunks |
4230 | bordering top into fastbins |
4231 | */ |
4232 | && (chunk_at_offset(p, size) != av->top) |
4233 | #endif |
4234 | ) { |
4235 | |
4236 | if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size)) |
4237 | <= 2 * SIZE_SZ, 0) |
4238 | || __builtin_expect (chunksize (chunk_at_offset (p, size)) |
4239 | >= av->system_mem, 0)) |
4240 | { |
4241 | bool fail = true; |
4242 | /* We might not have a lock at this point and concurrent modifications |
4243 | of system_mem might result in a false positive. Redo the test after |
4244 | getting the lock. */ |
4245 | if (!have_lock) |
4246 | { |
4247 | __libc_lock_lock (av->mutex); |
4248 | fail = (chunksize_nomask (chunk_at_offset (p, size)) <= 2 * SIZE_SZ |
4249 | || chunksize (chunk_at_offset (p, size)) >= av->system_mem); |
4250 | __libc_lock_unlock (av->mutex); |
4251 | } |
4252 | |
4253 | if (fail) |
4254 | malloc_printerr ("free(): invalid next size (fast)" ); |
4255 | } |
4256 | |
4257 | free_perturb (chunk2mem(p), size - 2 * SIZE_SZ); |
4258 | |
4259 | atomic_store_relaxed (&av->have_fastchunks, true); |
4260 | unsigned int idx = fastbin_index(size); |
4261 | fb = &fastbin (av, idx); |
4262 | |
4263 | /* Atomically link P to its fastbin: P->FD = *FB; *FB = P; */ |
4264 | mchunkptr old = *fb, old2; |
4265 | |
4266 | if (SINGLE_THREAD_P) |
4267 | { |
4268 | /* Check that the top of the bin is not the record we are going to |
4269 | add (i.e., double free). */ |
4270 | if (__builtin_expect (old == p, 0)) |
4271 | malloc_printerr ("double free or corruption (fasttop)" ); |
4272 | p->fd = old; |
4273 | *fb = p; |
4274 | } |
4275 | else |
4276 | do |
4277 | { |
4278 | /* Check that the top of the bin is not the record we are going to |
4279 | add (i.e., double free). */ |
4280 | if (__builtin_expect (old == p, 0)) |
4281 | malloc_printerr ("double free or corruption (fasttop)" ); |
4282 | p->fd = old2 = old; |
4283 | } |
4284 | while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2)) |
4285 | != old2); |
4286 | |
4287 | /* Check that size of fastbin chunk at the top is the same as |
4288 | size of the chunk that we are adding. We can dereference OLD |
4289 | only if we have the lock, otherwise it might have already been |
4290 | allocated again. */ |
4291 | if (have_lock && old != NULL |
4292 | && __builtin_expect (fastbin_index (chunksize (old)) != idx, 0)) |
4293 | malloc_printerr ("invalid fastbin entry (free)" ); |
4294 | } |
4295 | |
4296 | /* |
4297 | Consolidate other non-mmapped chunks as they arrive. |
4298 | */ |
4299 | |
4300 | else if (!chunk_is_mmapped(p)) { |
4301 | |
4302 | /* If we're single-threaded, don't lock the arena. */ |
4303 | if (SINGLE_THREAD_P) |
4304 | have_lock = true; |
4305 | |
4306 | if (!have_lock) |
4307 | __libc_lock_lock (av->mutex); |
4308 | |
4309 | nextchunk = chunk_at_offset(p, size); |
4310 | |
4311 | /* Lightweight tests: check whether the block is already the |
4312 | top block. */ |
4313 | if (__glibc_unlikely (p == av->top)) |
4314 | malloc_printerr ("double free or corruption (top)" ); |
4315 | /* Or whether the next chunk is beyond the boundaries of the arena. */ |
4316 | if (__builtin_expect (contiguous (av) |
4317 | && (char *) nextchunk |
4318 | >= ((char *) av->top + chunksize(av->top)), 0)) |
4319 | malloc_printerr ("double free or corruption (out)" ); |
4320 | /* Or whether the block is actually not marked used. */ |
4321 | if (__glibc_unlikely (!prev_inuse(nextchunk))) |
4322 | malloc_printerr ("double free or corruption (!prev)" ); |
4323 | |
4324 | nextsize = chunksize(nextchunk); |
4325 | if (__builtin_expect (chunksize_nomask (nextchunk) <= 2 * SIZE_SZ, 0) |
4326 | || __builtin_expect (nextsize >= av->system_mem, 0)) |
4327 | malloc_printerr ("free(): invalid next size (normal)" ); |
4328 | |
4329 | free_perturb (chunk2mem(p), size - 2 * SIZE_SZ); |
4330 | |
4331 | /* consolidate backward */ |
4332 | if (!prev_inuse(p)) { |
4333 | prevsize = prev_size (p); |
4334 | size += prevsize; |
4335 | p = chunk_at_offset(p, -((long) prevsize)); |
4336 | if (__glibc_unlikely (chunksize(p) != prevsize)) |
4337 | malloc_printerr ("corrupted size vs. prev_size while consolidating" ); |
4338 | unlink(av, p, bck, fwd); |
4339 | } |
4340 | |
4341 | if (nextchunk != av->top) { |
4342 | /* get and clear inuse bit */ |
4343 | nextinuse = inuse_bit_at_offset(nextchunk, nextsize); |
4344 | |
4345 | /* consolidate forward */ |
4346 | if (!nextinuse) { |
4347 | unlink(av, nextchunk, bck, fwd); |
4348 | size += nextsize; |
4349 | } else |
4350 | clear_inuse_bit_at_offset(nextchunk, 0); |
4351 | |
4352 | /* |
4353 | Place the chunk in unsorted chunk list. Chunks are |
4354 | not placed into regular bins until after they have |
4355 | been given one chance to be used in malloc. |
4356 | */ |
4357 | |
4358 | bck = unsorted_chunks(av); |
4359 | fwd = bck->fd; |
4360 | if (__glibc_unlikely (fwd->bk != bck)) |
4361 | malloc_printerr ("free(): corrupted unsorted chunks" ); |
4362 | p->fd = fwd; |
4363 | p->bk = bck; |
4364 | if (!in_smallbin_range(size)) |
4365 | { |
4366 | p->fd_nextsize = NULL; |
4367 | p->bk_nextsize = NULL; |
4368 | } |
4369 | bck->fd = p; |
4370 | fwd->bk = p; |
4371 | |
4372 | set_head(p, size | PREV_INUSE); |
4373 | set_foot(p, size); |
4374 | |
4375 | check_free_chunk(av, p); |
4376 | } |
4377 | |
4378 | /* |
4379 | If the chunk borders the current high end of memory, |
4380 | consolidate into top |
4381 | */ |
4382 | |
4383 | else { |
4384 | size += nextsize; |
4385 | set_head(p, size | PREV_INUSE); |
4386 | av->top = p; |
4387 | check_chunk(av, p); |
4388 | } |
4389 | |
4390 | /* |
4391 | If freeing a large space, consolidate possibly-surrounding |
4392 | chunks. Then, if the total unused topmost memory exceeds trim |
4393 | threshold, ask malloc_trim to reduce top. |
4394 | |
4395 | Unless max_fast is 0, we don't know if there are fastbins |
4396 | bordering top, so we cannot tell for sure whether threshold |
4397 | has been reached unless fastbins are consolidated. But we |
4398 | don't want to consolidate on each free. As a compromise, |
4399 | consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD |
4400 | is reached. |
4401 | */ |
4402 | |
4403 | if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) { |
4404 | if (atomic_load_relaxed (&av->have_fastchunks)) |
4405 | malloc_consolidate(av); |
4406 | |
4407 | if (av == &main_arena) { |
4408 | #ifndef MORECORE_CANNOT_TRIM |
4409 | if ((unsigned long)(chunksize(av->top)) >= |
4410 | (unsigned long)(mp_.trim_threshold)) |
4411 | systrim(mp_.top_pad, av); |
4412 | #endif |
4413 | } else { |
4414 | /* Always try heap_trim(), even if the top chunk is not |
4415 | large, because the corresponding heap might go away. */ |
4416 | heap_info *heap = heap_for_ptr(top(av)); |
4417 | |
4418 | assert(heap->ar_ptr == av); |
4419 | heap_trim(heap, mp_.top_pad); |
4420 | } |
4421 | } |
4422 | |
4423 | if (!have_lock) |
4424 | __libc_lock_unlock (av->mutex); |
4425 | } |
4426 | /* |
4427 | If the chunk was allocated via mmap, release via munmap(). |
4428 | */ |
4429 | |
4430 | else { |
4431 | munmap_chunk (p); |
4432 | } |
4433 | } |
4434 | |
4435 | /* |
4436 | ------------------------- malloc_consolidate ------------------------- |
4437 | |
4438 | malloc_consolidate is a specialized version of free() that tears |
4439 | down chunks held in fastbins. Free itself cannot be used for this |
4440 | purpose since, among other things, it might place chunks back onto |
4441 | fastbins. So, instead, we need to use a minor variant of the same |
4442 | code. |
4443 | */ |
4444 | |
4445 | static void malloc_consolidate(mstate av) |
4446 | { |
4447 | mfastbinptr* fb; /* current fastbin being consolidated */ |
4448 | mfastbinptr* maxfb; /* last fastbin (for loop control) */ |
4449 | mchunkptr p; /* current chunk being consolidated */ |
4450 | mchunkptr nextp; /* next chunk to consolidate */ |
4451 | mchunkptr unsorted_bin; /* bin header */ |
4452 | mchunkptr first_unsorted; /* chunk to link to */ |
4453 | |
4454 | /* These have same use as in free() */ |
4455 | mchunkptr nextchunk; |
4456 | INTERNAL_SIZE_T size; |
4457 | INTERNAL_SIZE_T nextsize; |
4458 | INTERNAL_SIZE_T prevsize; |
4459 | int nextinuse; |
4460 | mchunkptr bck; |
4461 | mchunkptr fwd; |
4462 | |
4463 | atomic_store_relaxed (&av->have_fastchunks, false); |
4464 | |
4465 | unsorted_bin = unsorted_chunks(av); |
4466 | |
4467 | /* |
4468 | Remove each chunk from fast bin and consolidate it, placing it |
4469 | then in unsorted bin. Among other reasons for doing this, |
4470 | placing in unsorted bin avoids needing to calculate actual bins |
4471 | until malloc is sure that chunks aren't immediately going to be |
4472 | reused anyway. |
4473 | */ |
4474 | |
4475 | maxfb = &fastbin (av, NFASTBINS - 1); |
4476 | fb = &fastbin (av, 0); |
4477 | do { |
4478 | p = atomic_exchange_acq (fb, NULL); |
4479 | if (p != 0) { |
4480 | do { |
4481 | { |
4482 | unsigned int idx = fastbin_index (chunksize (p)); |
4483 | if ((&fastbin (av, idx)) != fb) |
4484 | malloc_printerr ("malloc_consolidate(): invalid chunk size" ); |
4485 | } |
4486 | |
4487 | check_inuse_chunk(av, p); |
4488 | nextp = p->fd; |
4489 | |
4490 | /* Slightly streamlined version of consolidation code in free() */ |
4491 | size = chunksize (p); |
4492 | nextchunk = chunk_at_offset(p, size); |
4493 | nextsize = chunksize(nextchunk); |
4494 | |
4495 | if (!prev_inuse(p)) { |
4496 | prevsize = prev_size (p); |
4497 | size += prevsize; |
4498 | p = chunk_at_offset(p, -((long) prevsize)); |
4499 | if (__glibc_unlikely (chunksize(p) != prevsize)) |
4500 | malloc_printerr ("corrupted size vs. prev_size in fastbins" ); |
4501 | unlink(av, p, bck, fwd); |
4502 | } |
4503 | |
4504 | if (nextchunk != av->top) { |
4505 | nextinuse = inuse_bit_at_offset(nextchunk, nextsize); |
4506 | |
4507 | if (!nextinuse) { |
4508 | size += nextsize; |
4509 | unlink(av, nextchunk, bck, fwd); |
4510 | } else |
4511 | clear_inuse_bit_at_offset(nextchunk, 0); |
4512 | |
4513 | first_unsorted = unsorted_bin->fd; |
4514 | unsorted_bin->fd = p; |
4515 | first_unsorted->bk = p; |
4516 | |
4517 | if (!in_smallbin_range (size)) { |
4518 | p->fd_nextsize = NULL; |
4519 | p->bk_nextsize = NULL; |
4520 | } |
4521 | |
4522 | set_head(p, size | PREV_INUSE); |
4523 | p->bk = unsorted_bin; |
4524 | p->fd = first_unsorted; |
4525 | set_foot(p, size); |
4526 | } |
4527 | |
4528 | else { |
4529 | size += nextsize; |
4530 | set_head(p, size | PREV_INUSE); |
4531 | av->top = p; |
4532 | } |
4533 | |
4534 | } while ( (p = nextp) != 0); |
4535 | |
4536 | } |
4537 | } while (fb++ != maxfb); |
4538 | } |
4539 | |
4540 | /* |
4541 | ------------------------------ realloc ------------------------------ |
4542 | */ |
4543 | |
4544 | void* |
4545 | _int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize, |
4546 | INTERNAL_SIZE_T nb) |
4547 | { |
4548 | mchunkptr newp; /* chunk to return */ |
4549 | INTERNAL_SIZE_T newsize; /* its size */ |
4550 | void* newmem; /* corresponding user mem */ |
4551 | |
4552 | mchunkptr next; /* next contiguous chunk after oldp */ |
4553 | |
4554 | mchunkptr remainder; /* extra space at end of newp */ |
4555 | unsigned long remainder_size; /* its size */ |
4556 | |
4557 | mchunkptr bck; /* misc temp for linking */ |
4558 | mchunkptr fwd; /* misc temp for linking */ |
4559 | |
4560 | /* oldmem size */ |
4561 | if (__builtin_expect (chunksize_nomask (oldp) <= 2 * SIZE_SZ, 0) |
4562 | || __builtin_expect (oldsize >= av->system_mem, 0)) |
4563 | malloc_printerr ("realloc(): invalid old size" ); |
4564 | |
4565 | check_inuse_chunk (av, oldp); |
4566 | |
4567 | /* All callers already filter out mmap'ed chunks. */ |
4568 | assert (!chunk_is_mmapped (oldp)); |
4569 | |
4570 | next = chunk_at_offset (oldp, oldsize); |
4571 | INTERNAL_SIZE_T nextsize = chunksize (next); |
4572 | if (__builtin_expect (chunksize_nomask (next) <= 2 * SIZE_SZ, 0) |
4573 | || __builtin_expect (nextsize >= av->system_mem, 0)) |
4574 | malloc_printerr ("realloc(): invalid next size" ); |
4575 | |
4576 | if ((unsigned long) (oldsize) >= (unsigned long) (nb)) |
4577 | { |
4578 | /* already big enough; split below */ |
4579 | newp = oldp; |
4580 | newsize = oldsize; |
4581 | } |
4582 | |
4583 | else |
4584 | { |
4585 | /* Try to expand forward into top */ |
4586 | if (next == av->top && |
4587 | (unsigned long) (newsize = oldsize + nextsize) >= |
4588 | (unsigned long) (nb + MINSIZE)) |
4589 | { |
4590 | set_head_size (oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4591 | av->top = chunk_at_offset (oldp, nb); |
4592 | set_head (av->top, (newsize - nb) | PREV_INUSE); |
4593 | check_inuse_chunk (av, oldp); |
4594 | return chunk2mem (oldp); |
4595 | } |
4596 | |
4597 | /* Try to expand forward into next chunk; split off remainder below */ |
4598 | else if (next != av->top && |
4599 | !inuse (next) && |
4600 | (unsigned long) (newsize = oldsize + nextsize) >= |
4601 | (unsigned long) (nb)) |
4602 | { |
4603 | newp = oldp; |
4604 | unlink (av, next, bck, fwd); |
4605 | } |
4606 | |
4607 | /* allocate, copy, free */ |
4608 | else |
4609 | { |
4610 | newmem = _int_malloc (av, nb - MALLOC_ALIGN_MASK); |
4611 | if (newmem == 0) |
4612 | return 0; /* propagate failure */ |
4613 | |
4614 | newp = mem2chunk (newmem); |
4615 | newsize = chunksize (newp); |
4616 | |
4617 | /* |
4618 | Avoid copy if newp is next chunk after oldp. |
4619 | */ |
4620 | if (newp == next) |
4621 | { |
4622 | newsize += oldsize; |
4623 | newp = oldp; |
4624 | } |
4625 | else |
4626 | { |
4627 | memcpy (newmem, chunk2mem (oldp), oldsize - SIZE_SZ); |
4628 | _int_free (av, oldp, 1); |
4629 | check_inuse_chunk (av, newp); |
4630 | return chunk2mem (newp); |
4631 | } |
4632 | } |
4633 | } |
4634 | |
4635 | /* If possible, free extra space in old or extended chunk */ |
4636 | |
4637 | assert ((unsigned long) (newsize) >= (unsigned long) (nb)); |
4638 | |
4639 | remainder_size = newsize - nb; |
4640 | |
4641 | if (remainder_size < MINSIZE) /* not enough extra to split off */ |
4642 | { |
4643 | set_head_size (newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4644 | set_inuse_bit_at_offset (newp, newsize); |
4645 | } |
4646 | else /* split remainder */ |
4647 | { |
4648 | remainder = chunk_at_offset (newp, nb); |
4649 | set_head_size (newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4650 | set_head (remainder, remainder_size | PREV_INUSE | |
4651 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4652 | /* Mark remainder as inuse so free() won't complain */ |
4653 | set_inuse_bit_at_offset (remainder, remainder_size); |
4654 | _int_free (av, remainder, 1); |
4655 | } |
4656 | |
4657 | check_inuse_chunk (av, newp); |
4658 | return chunk2mem (newp); |
4659 | } |
4660 | |
4661 | /* |
4662 | ------------------------------ memalign ------------------------------ |
4663 | */ |
4664 | |
4665 | static void * |
4666 | _int_memalign (mstate av, size_t alignment, size_t bytes) |
4667 | { |
4668 | INTERNAL_SIZE_T nb; /* padded request size */ |
4669 | char *m; /* memory returned by malloc call */ |
4670 | mchunkptr p; /* corresponding chunk */ |
4671 | char *brk; /* alignment point within p */ |
4672 | mchunkptr newp; /* chunk to return */ |
4673 | INTERNAL_SIZE_T newsize; /* its size */ |
4674 | INTERNAL_SIZE_T leadsize; /* leading space before alignment point */ |
4675 | mchunkptr remainder; /* spare room at end to split off */ |
4676 | unsigned long remainder_size; /* its size */ |
4677 | INTERNAL_SIZE_T size; |
4678 | |
4679 | |
4680 | |
4681 | checked_request2size (bytes, nb); |
4682 | |
4683 | /* |
4684 | Strategy: find a spot within that chunk that meets the alignment |
4685 | request, and then possibly free the leading and trailing space. |
4686 | */ |
4687 | |
4688 | |
4689 | /* Check for overflow. */ |
4690 | if (nb > SIZE_MAX - alignment - MINSIZE) |
4691 | { |
4692 | __set_errno (ENOMEM); |
4693 | return 0; |
4694 | } |
4695 | |
4696 | /* Call malloc with worst case padding to hit alignment. */ |
4697 | |
4698 | m = (char *) (_int_malloc (av, nb + alignment + MINSIZE)); |
4699 | |
4700 | if (m == 0) |
4701 | return 0; /* propagate failure */ |
4702 | |
4703 | p = mem2chunk (m); |
4704 | |
4705 | if ((((unsigned long) (m)) % alignment) != 0) /* misaligned */ |
4706 | |
4707 | { /* |
4708 | Find an aligned spot inside chunk. Since we need to give back |
4709 | leading space in a chunk of at least MINSIZE, if the first |
4710 | calculation places us at a spot with less than MINSIZE leader, |
4711 | we can move to the next aligned spot -- we've allocated enough |
4712 | total room so that this is always possible. |
4713 | */ |
4714 | brk = (char *) mem2chunk (((unsigned long) (m + alignment - 1)) & |
4715 | - ((signed long) alignment)); |
4716 | if ((unsigned long) (brk - (char *) (p)) < MINSIZE) |
4717 | brk += alignment; |
4718 | |
4719 | newp = (mchunkptr) brk; |
4720 | leadsize = brk - (char *) (p); |
4721 | newsize = chunksize (p) - leadsize; |
4722 | |
4723 | /* For mmapped chunks, just adjust offset */ |
4724 | if (chunk_is_mmapped (p)) |
4725 | { |
4726 | set_prev_size (newp, prev_size (p) + leadsize); |
4727 | set_head (newp, newsize | IS_MMAPPED); |
4728 | return chunk2mem (newp); |
4729 | } |
4730 | |
4731 | /* Otherwise, give back leader, use the rest */ |
4732 | set_head (newp, newsize | PREV_INUSE | |
4733 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4734 | set_inuse_bit_at_offset (newp, newsize); |
4735 | set_head_size (p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4736 | _int_free (av, p, 1); |
4737 | p = newp; |
4738 | |
4739 | assert (newsize >= nb && |
4740 | (((unsigned long) (chunk2mem (p))) % alignment) == 0); |
4741 | } |
4742 | |
4743 | /* Also give back spare room at the end */ |
4744 | if (!chunk_is_mmapped (p)) |
4745 | { |
4746 | size = chunksize (p); |
4747 | if ((unsigned long) (size) > (unsigned long) (nb + MINSIZE)) |
4748 | { |
4749 | remainder_size = size - nb; |
4750 | remainder = chunk_at_offset (p, nb); |
4751 | set_head (remainder, remainder_size | PREV_INUSE | |
4752 | (av != &main_arena ? NON_MAIN_ARENA : 0)); |
4753 | set_head_size (p, nb); |
4754 | _int_free (av, remainder, 1); |
4755 | } |
4756 | } |
4757 | |
4758 | check_inuse_chunk (av, p); |
4759 | return chunk2mem (p); |
4760 | } |
4761 | |
4762 | |
4763 | /* |
4764 | ------------------------------ malloc_trim ------------------------------ |
4765 | */ |
4766 | |
4767 | static int |
4768 | mtrim (mstate av, size_t pad) |
4769 | { |
4770 | /* Ensure all blocks are consolidated. */ |
4771 | malloc_consolidate (av); |
4772 | |
4773 | const size_t ps = GLRO (dl_pagesize); |
4774 | int psindex = bin_index (ps); |
4775 | const size_t psm1 = ps - 1; |
4776 | |
4777 | int result = 0; |
4778 | for (int i = 1; i < NBINS; ++i) |
4779 | if (i == 1 || i >= psindex) |
4780 | { |
4781 | mbinptr bin = bin_at (av, i); |
4782 | |
4783 | for (mchunkptr p = last (bin); p != bin; p = p->bk) |
4784 | { |
4785 | INTERNAL_SIZE_T size = chunksize (p); |
4786 | |
4787 | if (size > psm1 + sizeof (struct malloc_chunk)) |
4788 | { |
4789 | /* See whether the chunk contains at least one unused page. */ |
4790 | char *paligned_mem = (char *) (((uintptr_t) p |
4791 | + sizeof (struct malloc_chunk) |
4792 | + psm1) & ~psm1); |
4793 | |
4794 | assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem); |
4795 | assert ((char *) p + size > paligned_mem); |
4796 | |
4797 | /* This is the size we could potentially free. */ |
4798 | size -= paligned_mem - (char *) p; |
4799 | |
4800 | if (size > psm1) |
4801 | { |
4802 | #if MALLOC_DEBUG |
4803 | /* When debugging we simulate destroying the memory |
4804 | content. */ |
4805 | memset (paligned_mem, 0x89, size & ~psm1); |
4806 | #endif |
4807 | __madvise (paligned_mem, size & ~psm1, MADV_DONTNEED); |
4808 | |
4809 | result = 1; |
4810 | } |
4811 | } |
4812 | } |
4813 | } |
4814 | |
4815 | #ifndef MORECORE_CANNOT_TRIM |
4816 | return result | (av == &main_arena ? systrim (pad, av) : 0); |
4817 | |
4818 | #else |
4819 | return result; |
4820 | #endif |
4821 | } |
4822 | |
4823 | |
4824 | int |
4825 | __malloc_trim (size_t s) |
4826 | { |
4827 | int result = 0; |
4828 | |
4829 | if (__malloc_initialized < 0) |
4830 | ptmalloc_init (); |
4831 | |
4832 | mstate ar_ptr = &main_arena; |
4833 | do |
4834 | { |
4835 | __libc_lock_lock (ar_ptr->mutex); |
4836 | result |= mtrim (ar_ptr, s); |
4837 | __libc_lock_unlock (ar_ptr->mutex); |
4838 | |
4839 | ar_ptr = ar_ptr->next; |
4840 | } |
4841 | while (ar_ptr != &main_arena); |
4842 | |
4843 | return result; |
4844 | } |
4845 | |
4846 | |
4847 | /* |
4848 | ------------------------- malloc_usable_size ------------------------- |
4849 | */ |
4850 | |
4851 | static size_t |
4852 | musable (void *mem) |
4853 | { |
4854 | mchunkptr p; |
4855 | if (mem != 0) |
4856 | { |
4857 | p = mem2chunk (mem); |
4858 | |
4859 | if (__builtin_expect (using_malloc_checking == 1, 0)) |
4860 | return malloc_check_get_size (p); |
4861 | |
4862 | if (chunk_is_mmapped (p)) |
4863 | { |
4864 | if (DUMPED_MAIN_ARENA_CHUNK (p)) |
4865 | return chunksize (p) - SIZE_SZ; |
4866 | else |
4867 | return chunksize (p) - 2 * SIZE_SZ; |
4868 | } |
4869 | else if (inuse (p)) |
4870 | return chunksize (p) - SIZE_SZ; |
4871 | } |
4872 | return 0; |
4873 | } |
4874 | |
4875 | |
4876 | size_t |
4877 | __malloc_usable_size (void *m) |
4878 | { |
4879 | size_t result; |
4880 | |
4881 | result = musable (m); |
4882 | return result; |
4883 | } |
4884 | |
4885 | /* |
4886 | ------------------------------ mallinfo ------------------------------ |
4887 | Accumulate malloc statistics for arena AV into M. |
4888 | */ |
4889 | |
4890 | static void |
4891 | int_mallinfo (mstate av, struct mallinfo *m) |
4892 | { |
4893 | size_t i; |
4894 | mbinptr b; |
4895 | mchunkptr p; |
4896 | INTERNAL_SIZE_T avail; |
4897 | INTERNAL_SIZE_T fastavail; |
4898 | int nblocks; |
4899 | int nfastblocks; |
4900 | |
4901 | check_malloc_state (av); |
4902 | |
4903 | /* Account for top */ |
4904 | avail = chunksize (av->top); |
4905 | nblocks = 1; /* top always exists */ |
4906 | |
4907 | /* traverse fastbins */ |
4908 | nfastblocks = 0; |
4909 | fastavail = 0; |
4910 | |
4911 | for (i = 0; i < NFASTBINS; ++i) |
4912 | { |
4913 | for (p = fastbin (av, i); p != 0; p = p->fd) |
4914 | { |
4915 | ++nfastblocks; |
4916 | fastavail += chunksize (p); |
4917 | } |
4918 | } |
4919 | |
4920 | avail += fastavail; |
4921 | |
4922 | /* traverse regular bins */ |
4923 | for (i = 1; i < NBINS; ++i) |
4924 | { |
4925 | b = bin_at (av, i); |
4926 | for (p = last (b); p != b; p = p->bk) |
4927 | { |
4928 | ++nblocks; |
4929 | avail += chunksize (p); |
4930 | } |
4931 | } |
4932 | |
4933 | m->smblks += nfastblocks; |
4934 | m->ordblks += nblocks; |
4935 | m->fordblks += avail; |
4936 | m->uordblks += av->system_mem - avail; |
4937 | m->arena += av->system_mem; |
4938 | m->fsmblks += fastavail; |
4939 | if (av == &main_arena) |
4940 | { |
4941 | m->hblks = mp_.n_mmaps; |
4942 | m->hblkhd = mp_.mmapped_mem; |
4943 | m->usmblks = 0; |
4944 | m->keepcost = chunksize (av->top); |
4945 | } |
4946 | } |
4947 | |
4948 | |
4949 | struct mallinfo |
4950 | __libc_mallinfo (void) |
4951 | { |
4952 | struct mallinfo m; |
4953 | mstate ar_ptr; |
4954 | |
4955 | if (__malloc_initialized < 0) |
4956 | ptmalloc_init (); |
4957 | |
4958 | memset (&m, 0, sizeof (m)); |
4959 | ar_ptr = &main_arena; |
4960 | do |
4961 | { |
4962 | __libc_lock_lock (ar_ptr->mutex); |
4963 | int_mallinfo (ar_ptr, &m); |
4964 | __libc_lock_unlock (ar_ptr->mutex); |
4965 | |
4966 | ar_ptr = ar_ptr->next; |
4967 | } |
4968 | while (ar_ptr != &main_arena); |
4969 | |
4970 | return m; |
4971 | } |
4972 | |
4973 | /* |
4974 | ------------------------------ malloc_stats ------------------------------ |
4975 | */ |
4976 | |
4977 | void |
4978 | __malloc_stats (void) |
4979 | { |
4980 | int i; |
4981 | mstate ar_ptr; |
4982 | unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b; |
4983 | |
4984 | if (__malloc_initialized < 0) |
4985 | ptmalloc_init (); |
4986 | _IO_flockfile (stderr); |
4987 | int old_flags2 = stderr->_flags2; |
4988 | stderr->_flags2 |= _IO_FLAGS2_NOTCANCEL; |
4989 | for (i = 0, ar_ptr = &main_arena;; i++) |
4990 | { |
4991 | struct mallinfo mi; |
4992 | |
4993 | memset (&mi, 0, sizeof (mi)); |
4994 | __libc_lock_lock (ar_ptr->mutex); |
4995 | int_mallinfo (ar_ptr, &mi); |
4996 | fprintf (stderr, "Arena %d:\n" , i); |
4997 | fprintf (stderr, "system bytes = %10u\n" , (unsigned int) mi.arena); |
4998 | fprintf (stderr, "in use bytes = %10u\n" , (unsigned int) mi.uordblks); |
4999 | #if MALLOC_DEBUG > 1 |
5000 | if (i > 0) |
5001 | dump_heap (heap_for_ptr (top (ar_ptr))); |
5002 | #endif |
5003 | system_b += mi.arena; |
5004 | in_use_b += mi.uordblks; |
5005 | __libc_lock_unlock (ar_ptr->mutex); |
5006 | ar_ptr = ar_ptr->next; |
5007 | if (ar_ptr == &main_arena) |
5008 | break; |
5009 | } |
5010 | fprintf (stderr, "Total (incl. mmap):\n" ); |
5011 | fprintf (stderr, "system bytes = %10u\n" , system_b); |
5012 | fprintf (stderr, "in use bytes = %10u\n" , in_use_b); |
5013 | fprintf (stderr, "max mmap regions = %10u\n" , (unsigned int) mp_.max_n_mmaps); |
5014 | fprintf (stderr, "max mmap bytes = %10lu\n" , |
5015 | (unsigned long) mp_.max_mmapped_mem); |
5016 | stderr->_flags2 = old_flags2; |
5017 | _IO_funlockfile (stderr); |
5018 | } |
5019 | |
5020 | |
5021 | /* |
5022 | ------------------------------ mallopt ------------------------------ |
5023 | */ |
5024 | static inline int |
5025 | __always_inline |
5026 | do_set_trim_threshold (size_t value) |
5027 | { |
5028 | LIBC_PROBE (memory_mallopt_trim_threshold, 3, value, mp_.trim_threshold, |
5029 | mp_.no_dyn_threshold); |
5030 | mp_.trim_threshold = value; |
5031 | mp_.no_dyn_threshold = 1; |
5032 | return 1; |
5033 | } |
5034 | |
5035 | static inline int |
5036 | __always_inline |
5037 | do_set_top_pad (size_t value) |
5038 | { |
5039 | LIBC_PROBE (memory_mallopt_top_pad, 3, value, mp_.top_pad, |
5040 | mp_.no_dyn_threshold); |
5041 | mp_.top_pad = value; |
5042 | mp_.no_dyn_threshold = 1; |
5043 | return 1; |
5044 | } |
5045 | |
5046 | static inline int |
5047 | __always_inline |
5048 | do_set_mmap_threshold (size_t value) |
5049 | { |
5050 | /* Forbid setting the threshold too high. */ |
5051 | if (value <= HEAP_MAX_SIZE / 2) |
5052 | { |
5053 | LIBC_PROBE (memory_mallopt_mmap_threshold, 3, value, mp_.mmap_threshold, |
5054 | mp_.no_dyn_threshold); |
5055 | mp_.mmap_threshold = value; |
5056 | mp_.no_dyn_threshold = 1; |
5057 | return 1; |
5058 | } |
5059 | return 0; |
5060 | } |
5061 | |
5062 | static inline int |
5063 | __always_inline |
5064 | do_set_mmaps_max (int32_t value) |
5065 | { |
5066 | LIBC_PROBE (memory_mallopt_mmap_max, 3, value, mp_.n_mmaps_max, |
5067 | mp_.no_dyn_threshold); |
5068 | mp_.n_mmaps_max = value; |
5069 | mp_.no_dyn_threshold = 1; |
5070 | return 1; |
5071 | } |
5072 | |
5073 | static inline int |
5074 | __always_inline |
5075 | do_set_mallopt_check (int32_t value) |
5076 | { |
5077 | return 1; |
5078 | } |
5079 | |
5080 | static inline int |
5081 | __always_inline |
5082 | do_set_perturb_byte (int32_t value) |
5083 | { |
5084 | LIBC_PROBE (memory_mallopt_perturb, 2, value, perturb_byte); |
5085 | perturb_byte = value; |
5086 | return 1; |
5087 | } |
5088 | |
5089 | static inline int |
5090 | __always_inline |
5091 | do_set_arena_test (size_t value) |
5092 | { |
5093 | LIBC_PROBE (memory_mallopt_arena_test, 2, value, mp_.arena_test); |
5094 | mp_.arena_test = value; |
5095 | return 1; |
5096 | } |
5097 | |
5098 | static inline int |
5099 | __always_inline |
5100 | do_set_arena_max (size_t value) |
5101 | { |
5102 | LIBC_PROBE (memory_mallopt_arena_max, 2, value, mp_.arena_max); |
5103 | mp_.arena_max = value; |
5104 | return 1; |
5105 | } |
5106 | |
5107 | #if USE_TCACHE |
5108 | static inline int |
5109 | __always_inline |
5110 | do_set_tcache_max (size_t value) |
5111 | { |
5112 | if (value >= 0 && value <= MAX_TCACHE_SIZE) |
5113 | { |
5114 | LIBC_PROBE (memory_tunable_tcache_max_bytes, 2, value, mp_.tcache_max_bytes); |
5115 | mp_.tcache_max_bytes = value; |
5116 | mp_.tcache_bins = csize2tidx (request2size(value)) + 1; |
5117 | } |
5118 | return 1; |
5119 | } |
5120 | |
5121 | static inline int |
5122 | __always_inline |
5123 | do_set_tcache_count (size_t value) |
5124 | { |
5125 | if (value <= MAX_TCACHE_COUNT) |
5126 | { |
5127 | LIBC_PROBE (memory_tunable_tcache_count, 2, value, mp_.tcache_count); |
5128 | mp_.tcache_count = value; |
5129 | } |
5130 | return 1; |
5131 | } |
5132 | |
5133 | static inline int |
5134 | __always_inline |
5135 | do_set_tcache_unsorted_limit (size_t value) |
5136 | { |
5137 | LIBC_PROBE (memory_tunable_tcache_unsorted_limit, 2, value, mp_.tcache_unsorted_limit); |
5138 | mp_.tcache_unsorted_limit = value; |
5139 | return 1; |
5140 | } |
5141 | #endif |
5142 | |
5143 | static inline int |
5144 | __always_inline |
5145 | do_set_mxfast (size_t value) |
5146 | { |
5147 | if (value >= 0 && value <= MAX_FAST_SIZE) |
5148 | { |
5149 | LIBC_PROBE (memory_mallopt_mxfast, 2, value, get_max_fast ()); |
5150 | set_max_fast (value); |
5151 | return 1; |
5152 | } |
5153 | return 0; |
5154 | } |
5155 | |
5156 | int |
5157 | __libc_mallopt (int param_number, int value) |
5158 | { |
5159 | mstate av = &main_arena; |
5160 | int res = 1; |
5161 | |
5162 | if (__malloc_initialized < 0) |
5163 | ptmalloc_init (); |
5164 | |
---|