| 1 | /* Compute sine and cosine of argument optimized with vector. |
| 2 | Copyright (C) 2017 Free Software Foundation, Inc. |
| 3 | This file is part of the GNU C Library. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, see |
| 17 | <http://www.gnu.org/licenses/>. */ |
| 18 | |
| 19 | #include <errno.h> |
| 20 | #include <math.h> |
| 21 | #include <math_private.h> |
| 22 | #include <x86intrin.h> |
| 23 | #include <libm-alias-float.h> |
| 24 | #include "s_sincosf.h" |
| 25 | |
| 26 | #define SINCOSF __sincosf_fma |
| 27 | |
| 28 | #ifndef SINCOSF |
| 29 | # define SINCOSF_FUNC __sincosf |
| 30 | #else |
| 31 | # define SINCOSF_FUNC SINCOSF |
| 32 | #endif |
| 33 | |
| 34 | /* Chebyshev constants for sin and cos, range -PI/4 - PI/4. */ |
| 35 | static const __v2df V0 = { -0x1.5555555551cd9p-3, -0x1.ffffffffe98aep-2}; |
| 36 | static const __v2df V1 = { 0x1.1111110c2688bp-7, 0x1.55555545c50c7p-5 }; |
| 37 | static const __v2df V2 = { -0x1.a019f8b4bd1f9p-13, -0x1.6c16b348b6874p-10 }; |
| 38 | static const __v2df V3 = { 0x1.71d7264e6b5b4p-19, 0x1.a00eb9ac43ccp-16 }; |
| 39 | static const __v2df V4 = { -0x1.a947e1674b58ap-26, -0x1.23c97dd8844d7p-22 }; |
| 40 | |
| 41 | /* Chebyshev constants for sin and cos, range 2^-27 - 2^-5. */ |
| 42 | static const __v2df VC0 = { -0x1.555555543d49dp-3, -0x1.fffffff5cc6fdp-2 }; |
| 43 | static const __v2df VC1 = { 0x1.110f475cec8c5p-7, 0x1.55514b178dac5p-5 }; |
| 44 | |
| 45 | static const __v2df v2ones = { 1.0, 1.0 }; |
| 46 | |
| 47 | /* Compute the sine and cosine values using Chebyshev polynomials where |
| 48 | THETA is the range reduced absolute value of the input |
| 49 | and it is less than Pi/4, |
| 50 | N is calculated as trunc(|x|/(Pi/4)) + 1 and it is used to decide |
| 51 | whether a sine or cosine approximation is more accurate and |
| 52 | SIGNBIT is used to add the correct sign after the Chebyshev |
| 53 | polynomial is computed. */ |
| 54 | static void |
| 55 | reduced_sincos (const double theta, const unsigned int n, |
| 56 | const unsigned int signbit, float *sinx, float *cosx) |
| 57 | { |
| 58 | __v2df v2x, v2sx, v2cx; |
| 59 | const __v2df v2theta = { theta, theta }; |
| 60 | const __v2df v2theta2 = v2theta * v2theta; |
| 61 | /* Here sinf() and cosf() are calculated using sin Chebyshev polynomial: |
| 62 | x+x^3*(S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4)))). */ |
| 63 | v2x = V3 + v2theta2 * V4; /* S3+x^2*S4. */ |
| 64 | v2x = V2 + v2theta2 * v2x; /* S2+x^2*(S3+x^2*S4). */ |
| 65 | v2x = V1 + v2theta2 * v2x; /* S1+x^2*(S2+x^2*(S3+x^2*S4)). */ |
| 66 | v2x = V0 + v2theta2 * v2x; /* S0+x^2*(S1+x^2*(S2+x^2*(S3+x^2*S4))). */ |
| 67 | v2x = v2theta2 * v2x; |
| 68 | v2cx = v2ones + v2x; |
| 69 | v2sx = v2theta + v2theta * v2x; |
| 70 | /* We are operating on |x|, so we need to add back the original |
| 71 | signbit for sinf. */ |
| 72 | /* Determine positive or negative primary interval. */ |
| 73 | /* Are we in the primary interval of sin or cos? */ |
| 74 | if ((n & 2) == 0) |
| 75 | { |
| 76 | const __v2df v2sign = |
| 77 | { |
| 78 | ones[((n >> 2) & 1) ^ signbit], |
| 79 | ones[((n + 2) >> 2) & 1] |
| 80 | }; |
| 81 | v2cx[0] = v2sx[0]; |
| 82 | v2cx *= v2sign; |
| 83 | __v4sf v4sx = _mm_cvtpd_ps (v2cx); |
| 84 | *sinx = v4sx[0]; |
| 85 | *cosx = v4sx[1]; |
| 86 | } |
| 87 | else |
| 88 | { |
| 89 | const __v2df v2sign = |
| 90 | { |
| 91 | ones[((n + 2) >> 2) & 1], |
| 92 | ones[((n >> 2) & 1) ^ signbit] |
| 93 | }; |
| 94 | v2cx[0] = v2sx[0]; |
| 95 | v2cx *= v2sign; |
| 96 | __v4sf v4sx = _mm_cvtpd_ps (v2cx); |
| 97 | *sinx = v4sx[1]; |
| 98 | *cosx = v4sx[0]; |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | void |
| 103 | SINCOSF_FUNC (float x, float *sinx, float *cosx) |
| 104 | { |
| 105 | double theta = x; |
| 106 | double abstheta = fabs (theta); |
| 107 | uint32_t ix, xi; |
| 108 | GET_FLOAT_WORD (xi, x); |
| 109 | /* |x| */ |
| 110 | ix = xi & 0x7fffffff; |
| 111 | /* If |x|< Pi/4. */ |
| 112 | if (ix < 0x3f490fdb) |
| 113 | { |
| 114 | if (ix >= 0x3d000000) /* |x| >= 2^-5. */ |
| 115 | { |
| 116 | __v2df v2x, v2sx, v2cx; |
| 117 | const __v2df v2theta = { theta, theta }; |
| 118 | const __v2df v2theta2 = v2theta * v2theta; |
| 119 | /* Chebyshev polynomial of the form for sin and cos. */ |
| 120 | v2x = V3 + v2theta2 * V4; |
| 121 | v2x = V2 + v2theta2 * v2x; |
| 122 | v2x = V1 + v2theta2 * v2x; |
| 123 | v2x = V0 + v2theta2 * v2x; |
| 124 | v2x = v2theta2 * v2x; |
| 125 | v2cx = v2ones + v2x; |
| 126 | v2sx = v2theta + v2theta * v2x; |
| 127 | v2cx[0] = v2sx[0]; |
| 128 | __v4sf v4sx = _mm_cvtpd_ps (v2cx); |
| 129 | *sinx = v4sx[0]; |
| 130 | *cosx = v4sx[1]; |
| 131 | } |
| 132 | else if (ix >= 0x32000000) /* |x| >= 2^-27. */ |
| 133 | { |
| 134 | /* A simpler Chebyshev approximation is close enough for this range: |
| 135 | for sin: x+x^3*(SS0+x^2*SS1) |
| 136 | for cos: 1.0+x^2*(CC0+x^3*CC1). */ |
| 137 | __v2df v2x, v2sx, v2cx; |
| 138 | const __v2df v2theta = { theta, theta }; |
| 139 | const __v2df v2theta2 = v2theta * v2theta; |
| 140 | v2x = VC0 + v2theta * v2theta2 * VC1; |
| 141 | v2x = v2theta2 * v2x; |
| 142 | v2cx = v2ones + v2x; |
| 143 | v2sx = v2theta + v2theta * v2x; |
| 144 | v2cx[0] = v2sx[0]; |
| 145 | __v4sf v4sx = _mm_cvtpd_ps (v2cx); |
| 146 | *sinx = v4sx[0]; |
| 147 | *cosx = v4sx[1]; |
| 148 | } |
| 149 | else |
| 150 | { |
| 151 | /* Handle some special cases. */ |
| 152 | if (ix) |
| 153 | *sinx = theta - (theta * SMALL); |
| 154 | else |
| 155 | *sinx = theta; |
| 156 | *cosx = 1.0 - abstheta; |
| 157 | } |
| 158 | } |
| 159 | else /* |x| >= Pi/4. */ |
| 160 | { |
| 161 | unsigned int signbit = xi >> 31; |
| 162 | if (ix < 0x40e231d6) /* |x| < 9*Pi/4. */ |
| 163 | { |
| 164 | /* There are cases where FE_UPWARD rounding mode can |
| 165 | produce a result of abstheta * inv_PI_4 == 9, |
| 166 | where abstheta < 9pi/4, so the domain for |
| 167 | pio2_table must go to 5 (9 / 2 + 1). */ |
| 168 | unsigned int n = (abstheta * inv_PI_4) + 1; |
| 169 | theta = abstheta - pio2_table[n / 2]; |
| 170 | reduced_sincos (theta, n, signbit, sinx, cosx); |
| 171 | } |
| 172 | else if (ix < 0x7f800000) |
| 173 | { |
| 174 | if (ix < 0x4b000000) /* |x| < 2^23. */ |
| 175 | { |
| 176 | unsigned int n = ((unsigned int) (abstheta * inv_PI_4)) + 1; |
| 177 | double x = n / 2; |
| 178 | theta = (abstheta - x * PI_2_hi) - x * PI_2_lo; |
| 179 | /* Argument reduction needed. */ |
| 180 | reduced_sincos (theta, n, signbit, sinx, cosx); |
| 181 | } |
| 182 | else /* |x| >= 2^23. */ |
| 183 | { |
| 184 | x = fabsf (x); |
| 185 | int exponent |
| 186 | = (ix >> FLOAT_EXPONENT_SHIFT) - FLOAT_EXPONENT_BIAS; |
| 187 | exponent += 3; |
| 188 | exponent /= 28; |
| 189 | double a = invpio4_table[exponent] * x; |
| 190 | double b = invpio4_table[exponent + 1] * x; |
| 191 | double c = invpio4_table[exponent + 2] * x; |
| 192 | double d = invpio4_table[exponent + 3] * x; |
| 193 | uint64_t l = a; |
| 194 | l &= ~0x7; |
| 195 | a -= l; |
| 196 | double e = a + b; |
| 197 | l = e; |
| 198 | e = a - l; |
| 199 | if (l & 1) |
| 200 | { |
| 201 | e -= 1.0; |
| 202 | e += b; |
| 203 | e += c; |
| 204 | e += d; |
| 205 | e *= M_PI_4; |
| 206 | reduced_sincos (e, l + 1, signbit, sinx, cosx); |
| 207 | } |
| 208 | else |
| 209 | { |
| 210 | e += b; |
| 211 | e += c; |
| 212 | e += d; |
| 213 | if (e <= 1.0) |
| 214 | { |
| 215 | e *= M_PI_4; |
| 216 | reduced_sincos (e, l + 1, signbit, sinx, cosx); |
| 217 | } |
| 218 | else |
| 219 | { |
| 220 | l++; |
| 221 | e -= 2.0; |
| 222 | e *= M_PI_4; |
| 223 | reduced_sincos (e, l + 1, signbit, sinx, cosx); |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | } |
| 228 | else |
| 229 | { |
| 230 | if (ix == 0x7f800000) |
| 231 | __set_errno (EDOM); |
| 232 | /* sin/cos(Inf or NaN) is NaN. */ |
| 233 | *sinx = *cosx = x - x; |
| 234 | } |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | #ifndef SINCOSF |
| 239 | libm_alias_float (__sincos, sincos) |
| 240 | #endif |
| 241 | |