1/* Compute complex natural logarithm.
2 Copyright (C) 1997-2016 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
19
20#include <complex.h>
21#include <math.h>
22#include <math_private.h>
23#include <float.h>
24
25__complex__ float
26__clogf (__complex__ float x)
27{
28 __complex__ float result;
29 int rcls = fpclassify (__real__ x);
30 int icls = fpclassify (__imag__ x);
31
32 if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
33 {
34 /* Real and imaginary part are 0.0. */
35 __imag__ result = signbit (__real__ x) ? M_PI : 0.0;
36 __imag__ result = __copysignf (__imag__ result, __imag__ x);
37 /* Yes, the following line raises an exception. */
38 __real__ result = -1.0 / fabsf (__real__ x);
39 }
40 else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
41 {
42 /* Neither real nor imaginary part is NaN. */
43 float absx = fabsf (__real__ x), absy = fabsf (__imag__ x);
44 int scale = 0;
45
46 if (absx < absy)
47 {
48 float t = absx;
49 absx = absy;
50 absy = t;
51 }
52
53 if (absx > FLT_MAX / 2.0f)
54 {
55 scale = -1;
56 absx = __scalbnf (absx, scale);
57 absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f);
58 }
59 else if (absx < FLT_MIN && absy < FLT_MIN)
60 {
61 scale = FLT_MANT_DIG;
62 absx = __scalbnf (absx, scale);
63 absy = __scalbnf (absy, scale);
64 }
65
66 if (absx == 1.0f && scale == 0)
67 {
68 __real__ result = __log1pf (absy * absy) / 2.0f;
69 math_check_force_underflow_nonneg (__real__ result);
70 }
71 else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0)
72 {
73 float d2m1 = (absx - 1.0f) * (absx + 1.0f);
74 if (absy >= FLT_EPSILON)
75 d2m1 += absy * absy;
76 __real__ result = __log1pf (d2m1) / 2.0f;
77 }
78 else if (absx < 1.0f
79 && absx >= 0.5f
80 && absy < FLT_EPSILON / 2.0f
81 && scale == 0)
82 {
83 float d2m1 = (absx - 1.0f) * (absx + 1.0f);
84 __real__ result = __log1pf (d2m1) / 2.0f;
85 }
86 else if (absx < 1.0f
87 && absx >= 0.5f
88 && scale == 0
89 && absx * absx + absy * absy >= 0.5f)
90 {
91 float d2m1 = __x2y2m1f (absx, absy);
92 __real__ result = __log1pf (d2m1) / 2.0f;
93 }
94 else
95 {
96 float d = __ieee754_hypotf (absx, absy);
97 __real__ result = __ieee754_logf (d) - scale * (float) M_LN2;
98 }
99
100 __imag__ result = __ieee754_atan2f (__imag__ x, __real__ x);
101 }
102 else
103 {
104 __imag__ result = __nanf ("");
105 if (rcls == FP_INFINITE || icls == FP_INFINITE)
106 /* Real or imaginary part is infinite. */
107 __real__ result = HUGE_VALF;
108 else
109 __real__ result = __nanf ("");
110 }
111
112 return result;
113}
114#ifndef __clogf
115weak_alias (__clogf, clogf)
116#endif
117