1/* getifaddrs -- get names and addresses of all network interfaces
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
18
19#include <alloca.h>
20#include <assert.h>
21#include <errno.h>
22#include <ifaddrs.h>
23#include <net/if.h>
24#include <netinet/in.h>
25#include <netpacket/packet.h>
26#include <stdbool.h>
27#include <stdint.h>
28#include <stdlib.h>
29#include <string.h>
30#include <sys/ioctl.h>
31#include <sys/socket.h>
32#include <sysdep.h>
33#include <time.h>
34#include <unistd.h>
35
36#include "netlinkaccess.h"
37
38
39/* There is a problem with this type. The address length for
40 Infiniband sockets is much longer than the 8 bytes allocated in the
41 sockaddr_ll definition. Hence we use here a special
42 definition. */
43struct sockaddr_ll_max
44 {
45 unsigned short int sll_family;
46 unsigned short int sll_protocol;
47 int sll_ifindex;
48 unsigned short int sll_hatype;
49 unsigned char sll_pkttype;
50 unsigned char sll_halen;
51 unsigned char sll_addr[24];
52 };
53
54
55/* struct to hold the data for one ifaddrs entry, so we can allocate
56 everything at once. */
57struct ifaddrs_storage
58{
59 struct ifaddrs ifa;
60 union
61 {
62 /* Save space for the biggest of the four used sockaddr types and
63 avoid a lot of casts. */
64 struct sockaddr sa;
65 struct sockaddr_ll_max sl;
66 struct sockaddr_in s4;
67 struct sockaddr_in6 s6;
68 } addr, netmask, broadaddr;
69 char name[IF_NAMESIZE + 1];
70};
71
72
73void
74__netlink_free_handle (struct netlink_handle *h)
75{
76 struct netlink_res *ptr;
77 int saved_errno = errno;
78
79 ptr = h->nlm_list;
80 while (ptr != NULL)
81 {
82 struct netlink_res *tmpptr;
83
84 tmpptr = ptr->next;
85 free (ptr);
86 ptr = tmpptr;
87 }
88
89 __set_errno (saved_errno);
90}
91
92
93static int
94__netlink_sendreq (struct netlink_handle *h, int type)
95{
96 struct req
97 {
98 struct nlmsghdr nlh;
99 struct rtgenmsg g;
100 char pad[0];
101 } req;
102 struct sockaddr_nl nladdr;
103
104 if (h->seq == 0)
105 h->seq = time (NULL);
106
107 req.nlh.nlmsg_len = sizeof (req);
108 req.nlh.nlmsg_type = type;
109 req.nlh.nlmsg_flags = NLM_F_ROOT | NLM_F_MATCH | NLM_F_REQUEST;
110 req.nlh.nlmsg_pid = 0;
111 req.nlh.nlmsg_seq = h->seq;
112 req.g.rtgen_family = AF_UNSPEC;
113 if (sizeof (req) != offsetof (struct req, pad))
114 memset (req.pad, '\0', sizeof (req) - offsetof (struct req, pad));
115
116 memset (&nladdr, '\0', sizeof (nladdr));
117 nladdr.nl_family = AF_NETLINK;
118
119 return TEMP_FAILURE_RETRY (__sendto (h->fd, (void *) &req, sizeof (req), 0,
120 (struct sockaddr *) &nladdr,
121 sizeof (nladdr)));
122}
123
124
125int
126__netlink_request (struct netlink_handle *h, int type)
127{
128 struct netlink_res *nlm_next;
129 struct sockaddr_nl nladdr;
130 struct nlmsghdr *nlmh;
131 ssize_t read_len;
132 bool done = false;
133
134#ifdef PAGE_SIZE
135 /* Help the compiler optimize out the malloc call if PAGE_SIZE
136 is constant and smaller or equal to PTHREAD_STACK_MIN/4. */
137 const size_t buf_size = PAGE_SIZE;
138#else
139 const size_t buf_size = __getpagesize ();
140#endif
141 bool use_malloc = false;
142 char *buf;
143
144 if (__libc_use_alloca (buf_size))
145 buf = alloca (buf_size);
146 else
147 {
148 buf = malloc (buf_size);
149 if (buf != NULL)
150 use_malloc = true;
151 else
152 goto out_fail;
153 }
154
155 struct iovec iov = { buf, buf_size };
156
157 if (__netlink_sendreq (h, type) < 0)
158 goto out_fail;
159
160 while (! done)
161 {
162 struct msghdr msg =
163 {
164 .msg_name = (void *) &nladdr,
165 .msg_namelen = sizeof (nladdr),
166 .msg_iov = &iov,
167 .msg_iovlen = 1,
168 .msg_control = NULL,
169 .msg_controllen = 0,
170 .msg_flags = 0
171 };
172
173 read_len = TEMP_FAILURE_RETRY (__recvmsg (h->fd, &msg, 0));
174 __netlink_assert_response (h->fd, read_len);
175 if (read_len < 0)
176 goto out_fail;
177
178 if (nladdr.nl_pid != 0)
179 continue;
180
181 if (__glibc_unlikely (msg.msg_flags & MSG_TRUNC))
182 goto out_fail;
183
184 size_t count = 0;
185 size_t remaining_len = read_len;
186 for (nlmh = (struct nlmsghdr *) buf;
187 NLMSG_OK (nlmh, remaining_len);
188 nlmh = (struct nlmsghdr *) NLMSG_NEXT (nlmh, remaining_len))
189 {
190 if ((pid_t) nlmh->nlmsg_pid != h->pid
191 || nlmh->nlmsg_seq != h->seq)
192 continue;
193
194 ++count;
195 if (nlmh->nlmsg_type == NLMSG_DONE)
196 {
197 /* We found the end, leave the loop. */
198 done = true;
199 break;
200 }
201 if (nlmh->nlmsg_type == NLMSG_ERROR)
202 {
203 struct nlmsgerr *nlerr = (struct nlmsgerr *) NLMSG_DATA (nlmh);
204 if (nlmh->nlmsg_len < NLMSG_LENGTH (sizeof (struct nlmsgerr)))
205 errno = EIO;
206 else
207 errno = -nlerr->error;
208 goto out_fail;
209 }
210 }
211
212 /* If there was nothing with the expected nlmsg_pid and nlmsg_seq,
213 there is no point to record it. */
214 if (count == 0)
215 continue;
216
217 nlm_next = (struct netlink_res *) malloc (sizeof (struct netlink_res)
218 + read_len);
219 if (nlm_next == NULL)
220 goto out_fail;
221 nlm_next->next = NULL;
222 nlm_next->nlh = memcpy (nlm_next + 1, buf, read_len);
223 nlm_next->size = read_len;
224 nlm_next->seq = h->seq;
225 if (h->nlm_list == NULL)
226 h->nlm_list = nlm_next;
227 else
228 h->end_ptr->next = nlm_next;
229 h->end_ptr = nlm_next;
230 }
231
232 if (use_malloc)
233 free (buf);
234 return 0;
235
236out_fail:
237 if (use_malloc)
238 free (buf);
239 return -1;
240}
241
242
243void
244__netlink_close (struct netlink_handle *h)
245{
246 /* Don't modify errno. */
247 INTERNAL_SYSCALL_DECL (err);
248 (void) INTERNAL_SYSCALL (close, err, 1, h->fd);
249}
250
251
252/* Open a NETLINK socket. */
253int
254__netlink_open (struct netlink_handle *h)
255{
256 struct sockaddr_nl nladdr;
257
258 h->fd = __socket (PF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
259 if (h->fd < 0)
260 goto out;
261
262 memset (&nladdr, '\0', sizeof (nladdr));
263 nladdr.nl_family = AF_NETLINK;
264 if (__bind (h->fd, (struct sockaddr *) &nladdr, sizeof (nladdr)) < 0)
265 {
266 close_and_out:
267 __netlink_close (h);
268 out:
269 return -1;
270 }
271 /* Determine the ID the kernel assigned for this netlink connection.
272 It is not necessarily the PID if there is more than one socket
273 open. */
274 socklen_t addr_len = sizeof (nladdr);
275 if (__getsockname (h->fd, (struct sockaddr *) &nladdr, &addr_len) < 0)
276 goto close_and_out;
277 h->pid = nladdr.nl_pid;
278 return 0;
279}
280
281
282/* We know the number of RTM_NEWLINK entries, so we reserve the first
283 # of entries for this type. All RTM_NEWADDR entries have an index
284 pointer to the RTM_NEWLINK entry. To find the entry, create
285 a table to map kernel index entries to our index numbers.
286 Since we get at first all RTM_NEWLINK entries, it can never happen
287 that a RTM_NEWADDR index is not known to this map. */
288static int
289internal_function
290map_newlink (int index, struct ifaddrs_storage *ifas, int *map, int max)
291{
292 int i;
293
294 for (i = 0; i < max; i++)
295 {
296 if (map[i] == -1)
297 {
298 map[i] = index;
299 if (i > 0)
300 ifas[i - 1].ifa.ifa_next = &ifas[i].ifa;
301 return i;
302 }
303 else if (map[i] == index)
304 return i;
305 }
306
307 /* This means interfaces changed between the reading of the
308 RTM_GETLINK and RTM_GETADDR information. We have to repeat
309 everything. */
310 return -1;
311}
312
313
314/* Create a linked list of `struct ifaddrs' structures, one for each
315 network interface on the host machine. If successful, store the
316 list in *IFAP and return 0. On errors, return -1 and set `errno'. */
317static int
318getifaddrs_internal (struct ifaddrs **ifap)
319{
320 struct netlink_handle nh = { 0, 0, 0, NULL, NULL };
321 struct netlink_res *nlp;
322 struct ifaddrs_storage *ifas;
323 unsigned int i, newlink, newaddr, newaddr_idx;
324 int *map_newlink_data;
325 size_t ifa_data_size = 0; /* Size to allocate for all ifa_data. */
326 char *ifa_data_ptr; /* Pointer to the unused part of memory for
327 ifa_data. */
328 int result = 0;
329
330 *ifap = NULL;
331
332 if (__netlink_open (&nh) < 0)
333 return -1;
334
335 /* Tell the kernel that we wish to get a list of all
336 active interfaces, collect all data for every interface. */
337 if (__netlink_request (&nh, RTM_GETLINK) < 0)
338 {
339 result = -1;
340 goto exit_free;
341 }
342
343 /* Now ask the kernel for all addresses which are assigned
344 to an interface and collect all data for every interface.
345 Since we store the addresses after the interfaces in the
346 list, we will later always find the interface before the
347 corresponding addresses. */
348 ++nh.seq;
349 if (__netlink_request (&nh, RTM_GETADDR) < 0)
350 {
351 result = -1;
352 goto exit_free;
353 }
354
355 /* Count all RTM_NEWLINK and RTM_NEWADDR entries to allocate
356 enough memory. */
357 newlink = newaddr = 0;
358 for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
359 {
360 struct nlmsghdr *nlh;
361 size_t size = nlp->size;
362
363 if (nlp->nlh == NULL)
364 continue;
365
366 /* Walk through all entries we got from the kernel and look, which
367 message type they contain. */
368 for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
369 {
370 /* Check if the message is what we want. */
371 if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
372 continue;
373
374 if (nlh->nlmsg_type == NLMSG_DONE)
375 break; /* ok */
376
377 if (nlh->nlmsg_type == RTM_NEWLINK)
378 {
379 /* A RTM_NEWLINK message can have IFLA_STATS data. We need to
380 know the size before creating the list to allocate enough
381 memory. */
382 struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
383 struct rtattr *rta = IFLA_RTA (ifim);
384 size_t rtasize = IFLA_PAYLOAD (nlh);
385
386 while (RTA_OK (rta, rtasize))
387 {
388 size_t rta_payload = RTA_PAYLOAD (rta);
389
390 if (rta->rta_type == IFLA_STATS)
391 {
392 ifa_data_size += rta_payload;
393 break;
394 }
395 else
396 rta = RTA_NEXT (rta, rtasize);
397 }
398 ++newlink;
399 }
400 else if (nlh->nlmsg_type == RTM_NEWADDR)
401 ++newaddr;
402 }
403 }
404
405 /* Return if no interface is up. */
406 if ((newlink + newaddr) == 0)
407 goto exit_free;
408
409 /* Allocate memory for all entries we have and initialize next
410 pointer. */
411 ifas = (struct ifaddrs_storage *) calloc (1,
412 (newlink + newaddr)
413 * sizeof (struct ifaddrs_storage)
414 + ifa_data_size);
415 if (ifas == NULL)
416 {
417 result = -1;
418 goto exit_free;
419 }
420
421 /* Table for mapping kernel index to entry in our list. */
422 map_newlink_data = alloca (newlink * sizeof (int));
423 memset (map_newlink_data, '\xff', newlink * sizeof (int));
424
425 ifa_data_ptr = (char *) &ifas[newlink + newaddr];
426 newaddr_idx = 0; /* Counter for newaddr index. */
427
428 /* Walk through the list of data we got from the kernel. */
429 for (nlp = nh.nlm_list; nlp; nlp = nlp->next)
430 {
431 struct nlmsghdr *nlh;
432 size_t size = nlp->size;
433
434 if (nlp->nlh == NULL)
435 continue;
436
437 /* Walk through one message and look at the type: If it is our
438 message, we need RTM_NEWLINK/RTM_NEWADDR and stop if we reach
439 the end or we find the end marker (in this case we ignore the
440 following data. */
441 for (nlh = nlp->nlh; NLMSG_OK (nlh, size); nlh = NLMSG_NEXT (nlh, size))
442 {
443 int ifa_index = 0;
444
445 /* Check if the message is the one we want */
446 if ((pid_t) nlh->nlmsg_pid != nh.pid || nlh->nlmsg_seq != nlp->seq)
447 continue;
448
449 if (nlh->nlmsg_type == NLMSG_DONE)
450 break; /* ok */
451
452 if (nlh->nlmsg_type == RTM_NEWLINK)
453 {
454 /* We found a new interface. Now extract everything from the
455 interface data we got and need. */
456 struct ifinfomsg *ifim = (struct ifinfomsg *) NLMSG_DATA (nlh);
457 struct rtattr *rta = IFLA_RTA (ifim);
458 size_t rtasize = IFLA_PAYLOAD (nlh);
459
460 /* Interfaces are stored in the first "newlink" entries
461 of our list, starting in the order as we got from the
462 kernel. */
463 ifa_index = map_newlink (ifim->ifi_index - 1, ifas,
464 map_newlink_data, newlink);
465 if (__glibc_unlikely (ifa_index == -1))
466 {
467 try_again:
468 result = -EAGAIN;
469 free (ifas);
470 goto exit_free;
471 }
472 ifas[ifa_index].ifa.ifa_flags = ifim->ifi_flags;
473
474 while (RTA_OK (rta, rtasize))
475 {
476 char *rta_data = RTA_DATA (rta);
477 size_t rta_payload = RTA_PAYLOAD (rta);
478
479 switch (rta->rta_type)
480 {
481 case IFLA_ADDRESS:
482 if (rta_payload <= sizeof (ifas[ifa_index].addr))
483 {
484 ifas[ifa_index].addr.sl.sll_family = AF_PACKET;
485 memcpy (ifas[ifa_index].addr.sl.sll_addr,
486 (char *) rta_data, rta_payload);
487 ifas[ifa_index].addr.sl.sll_halen = rta_payload;
488 ifas[ifa_index].addr.sl.sll_ifindex
489 = ifim->ifi_index;
490 ifas[ifa_index].addr.sl.sll_hatype = ifim->ifi_type;
491
492 ifas[ifa_index].ifa.ifa_addr
493 = &ifas[ifa_index].addr.sa;
494 }
495 break;
496
497 case IFLA_BROADCAST:
498 if (rta_payload <= sizeof (ifas[ifa_index].broadaddr))
499 {
500 ifas[ifa_index].broadaddr.sl.sll_family = AF_PACKET;
501 memcpy (ifas[ifa_index].broadaddr.sl.sll_addr,
502 (char *) rta_data, rta_payload);
503 ifas[ifa_index].broadaddr.sl.sll_halen = rta_payload;
504 ifas[ifa_index].broadaddr.sl.sll_ifindex
505 = ifim->ifi_index;
506 ifas[ifa_index].broadaddr.sl.sll_hatype
507 = ifim->ifi_type;
508
509 ifas[ifa_index].ifa.ifa_broadaddr
510 = &ifas[ifa_index].broadaddr.sa;
511 }
512 break;
513
514 case IFLA_IFNAME: /* Name of Interface */
515 if ((rta_payload + 1) <= sizeof (ifas[ifa_index].name))
516 {
517 ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
518 *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
519 rta_payload) = '\0';
520 }
521 break;
522
523 case IFLA_STATS: /* Statistics of Interface */
524 ifas[ifa_index].ifa.ifa_data = ifa_data_ptr;
525 ifa_data_ptr += rta_payload;
526 memcpy (ifas[ifa_index].ifa.ifa_data, rta_data,
527 rta_payload);
528 break;
529
530 case IFLA_UNSPEC:
531 break;
532 case IFLA_MTU:
533 break;
534 case IFLA_LINK:
535 break;
536 case IFLA_QDISC:
537 break;
538 default:
539 break;
540 }
541
542 rta = RTA_NEXT (rta, rtasize);
543 }
544 }
545 else if (nlh->nlmsg_type == RTM_NEWADDR)
546 {
547 struct ifaddrmsg *ifam = (struct ifaddrmsg *) NLMSG_DATA (nlh);
548 struct rtattr *rta = IFA_RTA (ifam);
549 size_t rtasize = IFA_PAYLOAD (nlh);
550
551 /* New Addresses are stored in the order we got them from
552 the kernel after the interfaces. Theoretically it is possible
553 that we have holes in the interface part of the list,
554 but we always have already the interface for this address. */
555 ifa_index = newlink + newaddr_idx;
556 int idx = map_newlink (ifam->ifa_index - 1, ifas,
557 map_newlink_data, newlink);
558 if (__glibc_unlikely (idx == -1))
559 goto try_again;
560 ifas[ifa_index].ifa.ifa_flags = ifas[idx].ifa.ifa_flags;
561 if (ifa_index > 0)
562 ifas[ifa_index - 1].ifa.ifa_next = &ifas[ifa_index].ifa;
563 ++newaddr_idx;
564
565 while (RTA_OK (rta, rtasize))
566 {
567 char *rta_data = RTA_DATA (rta);
568 size_t rta_payload = RTA_PAYLOAD (rta);
569
570 switch (rta->rta_type)
571 {
572 case IFA_ADDRESS:
573 {
574 struct sockaddr *sa;
575
576 if (ifas[ifa_index].ifa.ifa_addr != NULL)
577 {
578 /* In a point-to-poing network IFA_ADDRESS
579 contains the destination address, local
580 address is supplied in IFA_LOCAL attribute.
581 destination address and broadcast address
582 are stored in an union, so it doesn't matter
583 which name we use. */
584 ifas[ifa_index].ifa.ifa_broadaddr
585 = &ifas[ifa_index].broadaddr.sa;
586 sa = &ifas[ifa_index].broadaddr.sa;
587 }
588 else
589 {
590 ifas[ifa_index].ifa.ifa_addr
591 = &ifas[ifa_index].addr.sa;
592 sa = &ifas[ifa_index].addr.sa;
593 }
594
595 sa->sa_family = ifam->ifa_family;
596
597 switch (ifam->ifa_family)
598 {
599 case AF_INET:
600 /* Size must match that of an address for IPv4. */
601 if (rta_payload == 4)
602 memcpy (&((struct sockaddr_in *) sa)->sin_addr,
603 rta_data, rta_payload);
604 break;
605
606 case AF_INET6:
607 /* Size must match that of an address for IPv6. */
608 if (rta_payload == 16)
609 {
610 memcpy (&((struct sockaddr_in6 *) sa)->sin6_addr,
611 rta_data, rta_payload);
612 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
613 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
614 ((struct sockaddr_in6 *) sa)->sin6_scope_id
615 = ifam->ifa_index;
616 }
617 break;
618
619 default:
620 if (rta_payload <= sizeof (ifas[ifa_index].addr))
621 memcpy (sa->sa_data, rta_data, rta_payload);
622 break;
623 }
624 }
625 break;
626
627 case IFA_LOCAL:
628 if (ifas[ifa_index].ifa.ifa_addr != NULL)
629 {
630 /* If ifa_addr is set and we get IFA_LOCAL,
631 assume we have a point-to-point network.
632 Move address to correct field. */
633 ifas[ifa_index].broadaddr = ifas[ifa_index].addr;
634 ifas[ifa_index].ifa.ifa_broadaddr
635 = &ifas[ifa_index].broadaddr.sa;
636 memset (&ifas[ifa_index].addr, '\0',
637 sizeof (ifas[ifa_index].addr));
638 }
639
640 ifas[ifa_index].ifa.ifa_addr = &ifas[ifa_index].addr.sa;
641 ifas[ifa_index].ifa.ifa_addr->sa_family
642 = ifam->ifa_family;
643
644 switch (ifam->ifa_family)
645 {
646 case AF_INET:
647 /* Size must match that of an address for IPv4. */
648 if (rta_payload == 4)
649 memcpy (&ifas[ifa_index].addr.s4.sin_addr,
650 rta_data, rta_payload);
651 break;
652
653 case AF_INET6:
654 /* Size must match that of an address for IPv6. */
655 if (rta_payload == 16)
656 {
657 memcpy (&ifas[ifa_index].addr.s6.sin6_addr,
658 rta_data, rta_payload);
659 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
660 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
661 ifas[ifa_index].addr.s6.sin6_scope_id =
662 ifam->ifa_index;
663 }
664 break;
665
666 default:
667 if (rta_payload <= sizeof (ifas[ifa_index].addr))
668 memcpy (ifas[ifa_index].addr.sa.sa_data,
669 rta_data, rta_payload);
670 break;
671 }
672 break;
673
674 case IFA_BROADCAST:
675 /* We get IFA_BROADCAST, so IFA_LOCAL was too much. */
676 if (ifas[ifa_index].ifa.ifa_broadaddr != NULL)
677 memset (&ifas[ifa_index].broadaddr, '\0',
678 sizeof (ifas[ifa_index].broadaddr));
679
680 ifas[ifa_index].ifa.ifa_broadaddr
681 = &ifas[ifa_index].broadaddr.sa;
682 ifas[ifa_index].ifa.ifa_broadaddr->sa_family
683 = ifam->ifa_family;
684
685 switch (ifam->ifa_family)
686 {
687 case AF_INET:
688 /* Size must match that of an address for IPv4. */
689 if (rta_payload == 4)
690 memcpy (&ifas[ifa_index].broadaddr.s4.sin_addr,
691 rta_data, rta_payload);
692 break;
693
694 case AF_INET6:
695 /* Size must match that of an address for IPv6. */
696 if (rta_payload == 16)
697 {
698 memcpy (&ifas[ifa_index].broadaddr.s6.sin6_addr,
699 rta_data, rta_payload);
700 if (IN6_IS_ADDR_LINKLOCAL (rta_data)
701 || IN6_IS_ADDR_MC_LINKLOCAL (rta_data))
702 ifas[ifa_index].broadaddr.s6.sin6_scope_id
703 = ifam->ifa_index;
704 }
705 break;
706
707 default:
708 if (rta_payload <= sizeof (ifas[ifa_index].addr))
709 memcpy (&ifas[ifa_index].broadaddr.sa.sa_data,
710 rta_data, rta_payload);
711 break;
712 }
713 break;
714
715 case IFA_LABEL:
716 if (rta_payload + 1 <= sizeof (ifas[ifa_index].name))
717 {
718 ifas[ifa_index].ifa.ifa_name = ifas[ifa_index].name;
719 *(char *) __mempcpy (ifas[ifa_index].name, rta_data,
720 rta_payload) = '\0';
721 }
722 else
723 abort ();
724 break;
725
726 case IFA_UNSPEC:
727 break;
728 case IFA_CACHEINFO:
729 break;
730 default:
731 break;
732 }
733
734 rta = RTA_NEXT (rta, rtasize);
735 }
736
737 /* If we didn't get the interface name with the
738 address, use the name from the interface entry. */
739 if (ifas[ifa_index].ifa.ifa_name == NULL)
740 {
741 int idx = map_newlink (ifam->ifa_index - 1, ifas,
742 map_newlink_data, newlink);
743 if (__glibc_unlikely (idx == -1))
744 goto try_again;
745 ifas[ifa_index].ifa.ifa_name = ifas[idx].ifa.ifa_name;
746 }
747
748 /* Calculate the netmask. */
749 if (ifas[ifa_index].ifa.ifa_addr
750 && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_UNSPEC
751 && ifas[ifa_index].ifa.ifa_addr->sa_family != AF_PACKET)
752 {
753 uint32_t max_prefixlen = 0;
754 char *cp = NULL;
755
756 ifas[ifa_index].ifa.ifa_netmask
757 = &ifas[ifa_index].netmask.sa;
758
759 switch (ifas[ifa_index].ifa.ifa_addr->sa_family)
760 {
761 case AF_INET:
762 cp = (char *) &ifas[ifa_index].netmask.s4.sin_addr;
763 max_prefixlen = 32;
764 break;
765
766 case AF_INET6:
767 cp = (char *) &ifas[ifa_index].netmask.s6.sin6_addr;
768 max_prefixlen = 128;
769 break;
770 }
771
772 ifas[ifa_index].ifa.ifa_netmask->sa_family
773 = ifas[ifa_index].ifa.ifa_addr->sa_family;
774
775 if (cp != NULL)
776 {
777 unsigned int preflen;
778
779 if (ifam->ifa_prefixlen > max_prefixlen)
780 preflen = max_prefixlen;
781 else
782 preflen = ifam->ifa_prefixlen;
783
784 for (i = 0; i < preflen / 8; i++)
785 *cp++ = 0xff;
786 if (preflen % 8)
787 *cp = 0xff << (8 - preflen % 8);
788 }
789 }
790 }
791 }
792 }
793
794 assert (ifa_data_ptr <= (char *) &ifas[newlink + newaddr] + ifa_data_size);
795
796 if (newaddr_idx > 0)
797 {
798 for (i = 0; i < newlink; ++i)
799 if (map_newlink_data[i] == -1)
800 {
801 /* We have fewer links then we anticipated. Adjust the
802 forward pointer to the first address entry. */
803 ifas[i - 1].ifa.ifa_next = &ifas[newlink].ifa;
804 }
805
806 if (i == 0 && newlink > 0)
807 /* No valid link, but we allocated memory. We have to
808 populate the first entry. */
809 memmove (ifas, &ifas[newlink], sizeof (struct ifaddrs_storage));
810 }
811
812 *ifap = &ifas[0].ifa;
813
814 exit_free:
815 __netlink_free_handle (&nh);
816 __netlink_close (&nh);
817
818 return result;
819}
820
821
822/* Create a linked list of `struct ifaddrs' structures, one for each
823 network interface on the host machine. If successful, store the
824 list in *IFAP and return 0. On errors, return -1 and set `errno'. */
825int
826__getifaddrs (struct ifaddrs **ifap)
827{
828 int res;
829
830 do
831 res = getifaddrs_internal (ifap);
832 while (res == -EAGAIN);
833
834 return res;
835}
836weak_alias (__getifaddrs, getifaddrs)
837libc_hidden_weak (getifaddrs)
838
839
840void
841__freeifaddrs (struct ifaddrs *ifa)
842{
843 free (ifa);
844}
845weak_alias (__freeifaddrs, freeifaddrs)
846libc_hidden_weak (freeifaddrs)
847